Volume 43 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LI Xu, SU Rui, ZHANG Huan, WENG Qianru, JIANG Xiaoyu. Influence of Multiple Micro Cracks on the Damage Behavior of a Macro-Crack Tip[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1347-1358. doi: 10.21656/1000-0887.420333
Citation: LI Xu, SU Rui, ZHANG Huan, WENG Qianru, JIANG Xiaoyu. Influence of Multiple Micro Cracks on the Damage Behavior of a Macro-Crack Tip[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1347-1358. doi: 10.21656/1000-0887.420333

Influence of Multiple Micro Cracks on the Damage Behavior of a Macro-Crack Tip

doi: 10.21656/1000-0887.420333
  • Received Date: 2021-11-02
  • Accepted Date: 2022-04-16
  • Rev Recd Date: 2022-04-16
  • Available Online: 2022-10-27
  • Publish Date: 2022-12-01
  • The solution of an infinite plane containing a macro crack and a cluster of micro cracks under uniaxial tensile load was presented based on Muskhelishvili’s complex function method and the stepwise recursive method. The stress field and stress intensity factor K were obtained. Combined with the damage mechanics, damage parameter D of the macro-crack tip and the micro-crack tip under uniaxial tension was redefined, and the influence of different damage zone forms on the damage of the crack tip was analyzed. The results show that, both the chain-distribution and the reverse-chain-distribution micro cracks have an amplifying effect on the macro crack growth, and the damage parameter increases with the decrease of the inclination angle of the micro crack and the reduction of the distance between the macro crack and the micro cracks. For a relatively small inclination angle of the micro crack, the damage parameters of the macro crack and the micro crack heightens, and the damage parameter of the macro crack increases with the micro-crack length. For evenly distributed micro cracks in the continuous damage zone, the micro cracks have an amplifying effect on the macro-crack growth, and the damage parameter of the macro crack increases with the micro-crack number.

  • loading
  • [1]
    LI X T, LI X, JIANG X Y. Influence of a micro-crack on the finite macro-crack[J]. Engineering Fracture Mechanics, 2017, 177: 95-103. doi: 10.1016/j.engfracmech.2017.03.037
    [2]
    GONG S X, HORII H. General solution to the problem of micro-cracks near the tip of a main crack[J]. Journal of the Mechanics & Physics of Solids, 1989, 37(1): 27-46.
    [3]
    GONG S X, MEGUID S A. Microdefect interacting with a main crack: a general treatment[J]. International Journal of Mechanical Sciences, 1992, 34(12): 933-945. doi: 10.1016/0020-7403(92)90063-M
    [4]
    GONG S X. On the main crack-microcrack interaction under mode Ⅲ loading[J]. Engineering Fracture Mechanics, 1995, 51(5): 753-762. doi: 10.1016/0013-7944(94)00318-C
    [5]
    PETROVA V E, TAMUZS V, ROMALIS N. A survey of macro-microcrack interaction problems[J]. Applied Mechanics Reviews, 2000, 53(5): 117-146. doi: 10.1115/1.3097344
    [6]
    PETROVA V E. Interaction between a main crack and inclusions of a given orientation[J]. Mechanics of Composite Materials, 1988, 24(3): 288-294. doi: 10.1007/BF00606598
    [7]
    PETROVA V E. Modified model of macro-microcrack interaction[J]. Theoretical & Applied Fracture Mechanics, 1999, 32(2): 111-117.
    [8]
    LI X T, LI X, YANG H D, et al. Effect of micro-cracks on plastic zone ahead of the macro-crack tip[J]. Journal of Materials Science, 2017, 52(1): 1-14. doi: 10.1007/s10853-016-0371-0
    [9]
    夏晓舟, 章青, 乔丕忠, 等. 裂纹间作用机制探讨及微裂纹区对主裂纹的作用效应研究[J]. 应用数学和力学, 2010, 31(1): 61-70 doi: 10.3879/j.issn.1000-0887.2010.01.007

    XIA Xiaozhou, ZHANG Qing, QIAO Pizhong, et al. Interaction between cracks and effect of micro-crack zone on main crack tip[J]. Applied Mathematics and Mechanics, 2010, 31(1): 61-70.(in Chinese) doi: 10.3879/j.issn.1000-0887.2010.01.007
    [10]
    李亚, 易志坚, 王敏, 等. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 1083-1091

    LI Ya, YI Zhijian, WANG Min, et al. The stress intensity factor of a finite width plate with a mode-Ⅰ center crack subjected to uniform stress on the crack surface near the crack tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091.(in Chinese)
    [11]
    CHESSA J, SMOLINSKI P, BELYTSCHKO T. The extended finite element method (XFEM) for solidification problems[J]. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1959-1977. doi: 10.1002/nme.386
    [12]
    SOH A K, YANG C H. Numerical modeling of interactions between a macro-crack and a cluster of micro-defects[J]. Engineering Fracture Mechanics, 2004, 71(2): 193-217. doi: 10.1016/S0013-7944(03)00097-3
    [13]
    OUINAS D, BOUIADJRA B B, BENDERDOUCHE N, et al. Numerical modelling of the interaction macro-multimicrocracks in a plate under tensile stress[J]. Journal of Computational Science, 2011, 2(2): 153-164. doi: 10.1016/j.jocs.2010.12.009
    [14]
    KACHANOV L. Time of the rupture process under creep conditions[J]. Doklady Akademii Nauk SSSR, 1958, 8: 26-31.
    [15]
    RABOTNOV Y N, LECKIE F A, PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970, 37(1): 249-250.
    [16]
    LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the ASME Journal of Engineering Materials and Technology, 1985, 107(1): 83-89. doi: 10.1115/1.3225775
    [17]
    MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Berlin: Springer Science & Business Media , 1977.
    [18]
    范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003.

    FAN Tianyou. The Theory of Fracture Mechanics[M]. Beijing: Science Press, 2003. (in Chinese)
    [19]
    KRAJCINOVIC D. Constitutive equations for damaging materials[J]. Journal of Applied Mechanics, 1983, 50(2): 355-360. doi: 10.1115/1.3167044
    [20]
    CHOW C L, WANG J. An anisotropic theory of elasticity for continuum damage mechanics[J]. International Journal of Fracture, 1987, 33(1): 3-16. doi: 10.1007/BF00034895
    [21]
    TANAKA K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics, 1974, 6(3): 493-507. doi: 10.1016/0013-7944(74)90007-1
    [22]
    KACHANOV M. Elastic solids with many cracks and related problems[J]. Advances in Applied Mechanics, 1993, 30: 259-445.
    [23]
    MURAKAMI Y, KEER L M. Stress intensity factors handbook[J]. Journal of Applied Mechanics, 1993, 60(4): 1063-1063. doi: 10.1115/1.2900983
    [24]
    冯西桥. 脆性材料的细观损伤理论和损伤结构的安定分析[D]. 博士学位论文. 北京: 清华大学, 1995.

    FENG Xiqiao. Micro-failure theory for brittle materials and shakedown analysis of structures with damage[D]. PhD Thesis. Beijing: Tsinghua University, 1995. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (544) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return