Volume 43 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
WANG Qiang, XU Tao, YAO Yongtao. Numerical Study on Hypersonic Flow and Aerodynamic Heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346
Citation: WANG Qiang, XU Tao, YAO Yongtao. Numerical Study on Hypersonic Flow and Aerodynamic Heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346

Numerical Study on Hypersonic Flow and Aerodynamic Heating

doi: 10.21656/1000-0887.420346
  • Received Date: 2021-11-15
  • Accepted Date: 2022-05-11
  • Rev Recd Date: 2022-04-13
  • Available Online: 2022-09-23
  • Publish Date: 2022-10-31
  • A finite-difference unsteady coupled heat transfer solver was developed. This solver was utilized to simulate the hypersonic flow over a backward-facing step with a transverse gap, and the unsteady thermal conduction in an infinite circular pipe. The backward-facing step leads to local dramatically changing distributions of aerodynamic parameters and wall heat fluxes. The gas flow in the gap decelerates rapidly along with the increase of the gap depth, and there is rather weak convective heat transfer at the bottom of the gap. In the case of hypersonic flow around the infinitely long circular pipe, there exists large temperature gradient in the boundary layer, and the wall temperature increases with time, otherwise the aerodynamic parameters outside the boundary layer change quite slightly. The predicted results are in good agreement with the tested data. The comparison between numerical simulation results and tested data verifies the calculation ability of the developed solver.

  • loading
  • [1]
    蔡国彪, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 32.

    CAI Guobiao, XU Dajun. Hypersonic Vehicle Technology[M]. Beijing: Science Press, 2012: 32. (in Chinese)
    [2]
    邱波, 国义军, 张昊元, 等. 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016, 37(3): 761-770

    QIU Bo, GUO Yijun, ZHANG Haoyuan, et al. Free stream parameters’ effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 761-770.(in Chinese)
    [3]
    HINDERKS M, RADESPIEL R. Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interacion[C]//Proceedings of AIAA Aerospace Sciences Meeting & Exhibit. Reno, Nevada: AIAA, 2006.
    [4]
    沈淳, 夏新林, 曹占伟, 等. 缝隙-腔体密封结构在高速气流冲击下的整体流动、传热特性分析[J]. 航空学报, 2012, 33(1): 34-43

    SHEN Chun, XIA Xinlin, CAO Zhanwei, et al. Analysis of flow and heat characteristics of seal structure with gap and cavity under the impact of high speed airflow[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 34-43.(in Chinese)
    [5]
    殷超, 张军, 梁天, 等. 高超飞行器舵缝隙气动热环境数值模拟研究[C]//中国力学大会. 杭州: 中国力学学会, 2019.

    YIN Chao, ZHANG Jun, LIANG Tian, et al. Numerical simulation study on aerodynamic thermal environment of hypersonic aircraft rudder gap[C]//Proceedings of Chinese Congress of Theoretical and Applied Mechanics. Hangzhou: The Chinese Society of Theoretical and Applied Mechanics, 2019. (in Chinese)
    [6]
    聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究[J]. 物理学报, 2012, 61(18): 184401 doi: 10.7498/aps.61.184401

    NIE Tao, LIU Weiqiang. Study of coupled fluid and solid for a hypersonic leading edge[J]. Acta Physica Sinica, 2012, 61(18): 184401.(in Chinese) doi: 10.7498/aps.61.184401
    [7]
    李邦明, 鲍麟, 童秉纲. 高超声速飞行器前驻点热流数值模拟的物理准则研究[J]. 应用数学和力学, 2010, 31(7): 801-811

    LI Bangming, BAO Lin, TONG Binggang. Physical criterion study on forward stagnation point heat flux CFD computations at hypersonic speeds[J]. Applied Mathematics and Mechanics, 2010, 31(7): 801-811.(in Chinese)
    [8]
    张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900 doi: 10.3873/j.issn.1000-1328.2014.08.005

    ZHANG Haoyuan, ZONG Wengang, GUI Yewei. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900.(in Chinese) doi: 10.3873/j.issn.1000-1328.2014.08.005
    [9]
    LIOU M S. A sequel to AUSM, part Ⅱ: AUSM + -up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170. doi: 10.1016/j.jcp.2005.09.020
    [10]
    COAKLEY T J. Turbulence modeling methods for the compressible Navier-Stokes equations[C]//Proceedings of 16th Fluid and Plasma Dynamics Conference. Danvers, Massachusetts: AIAA, 1983.
    [11]
    王强, 姜澎. 一种全速域的计算方法及其应用[J]. 应用数学和力学, 2016, 37(6): 567-573 doi: 10.3879/j.issn.1000-0887.2016.06.002

    WANG Qiang, JIANG Peng. A modified numerical method for arbitrary Mach number flows based on the preconditioning technique[J]. Applied Machematics and Mechanics, 2016, 37(6): 567-573.(in Chinese) doi: 10.3879/j.issn.1000-0887.2016.06.002
    [12]
    JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equation[J]. AIAA Journal, 1987, 25(7): 929-935. doi: 10.2514/3.9724
    [13]
    李荣华, 冯果忱. 微分方程数值解法[M]. 北京: 高等教育出版社, 1995: 330-332.

    LI Ronghua, FENG Guoshen. Differential Equation Numerical Resolution[M]. Beijing: Higher Education Press, 1995: 330-332. (in Chinese)
    [14]
    ANTONY J. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]//Proceedings of 10th Computational Fluid Dynamics Conference. Honolulu, HI: AIAA, 1991.
    [15]
    GROTOWSKY I M G, BALLMANN J. Numerical investigation of hypersonic step-flows[J]. Shock Waves, 2000, 10: 57-72. doi: 10.1007/s001930050179
    [16]
    JESSON C, VETTER M, GRÖNIG H. Experimental studies in the Aachen hypersonic shock tunnel[J]. Zeitschrift für Flugwissenschaften und Weltraumforschung, 1993, 17(2): 73-81.
    [17]
    ALLAN R W. Experimental investigation of heat transfer distributions in deep cavities in hypersonic separated flow: NASA-TN-5908[R]. Washington DC: NASA, 1970.
    [18]
    邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521

    QIU Bo, ZHANG Haoyuan, GUO Yijun, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinca, 2015, 36(11): 3515-3521.(in Chinese)
    [19]
    DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges: AIAA paper88-2245[R]. 1988.
    [20]
    李佳伟, 王江峰, 杨天鹏, 等. 高超声速飞行器前缘热-流-固一体化计算[J]. 国防科技大学学报, 2018, 40(6): 9-16 doi: 10.11887/j.cn.201806002

    LI Jiawei, WANG Jiangfeng, YANG Tianpeng, et al. Fluid-thermal-structural study of integrated algorithm for aerodynamically hypersonic heated leading edges[J]. Journal of National University of Defense Technology, 2018, 40(6): 9-16.(in Chinese) doi: 10.11887/j.cn.201806002
    [21]
    WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on cylindrical leading edge at Mach 6 and 8[C]// AIAA, 22nd Thermophysics Conference. 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (580) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return