Volume 43 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
CHEN Yan. Propagation Dynamics of a Discrete SIS Model With Time Periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163. doi: 10.21656/1000-0887.420350
Citation: CHEN Yan. Propagation Dynamics of a Discrete SIS Model With Time Periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163. doi: 10.21656/1000-0887.420350

Propagation Dynamics of a Discrete SIS Model With Time Periodicity

doi: 10.21656/1000-0887.420350
  • Received Date: 2021-11-19
  • Accepted Date: 2022-01-15
  • Rev Recd Date: 2022-01-15
  • Available Online: 2022-09-26
  • Publish Date: 2022-10-31
  • The propagation dynamics was studied for a class of spatially discrete multi-type SIS epidemic model with time periodicity. Firstly, the theory of spreading speeds and travelling waves for monotonic periodic semiflows was applied to prove the existence of asymptotic spreading speed c*. Secondly, by means of the comparison principle, the asymptotic spreading speed was proved to coincide with the minimal wave speed of monotonic periodic traveling waves.

  • loading
  • [1]
    DIEKMANN O. Thresholds and travelling waves for the geographical spread of infection[J]. Journal of Mathematical Biology, 1978, 6(2): 109-130.
    [2]
    WEINBERGER H F. Long-time behavior of a class of biological models[J]. SIAM Journal on Mathematical Analysis, 1982, 13(3): 353-396.
    [3]
    WANG H, WANG X S. Traveling wave phenomena in a Kermack-McKendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1): 143-166.
    [4]
    RASS L, RADCLIFFE J. Spatial Deterministic Epidemics[M]//Mathematical Surveys and Monographs, Vol 102. American Mathematical Society, 2003.
    [5]
    WENG P, ZHAO X Q. Spreading speed and traveling waves for a multi-type SIS epidemic model[J]. Journal of Differential Equations, 2006, 229(1): 270-296.
    [6]
    ZHANG K F, ZHAO X Q. Spreading speed and travelling waves for a spatially discrete SIS epidemic model[J]. Journal of Differential Equations, 2007, 21(1): 97-112.
    [7]
    WU S L, LI P, CAO H. Dynamics of a nonlocal multi-type SIS epidemic model with seasonality[J]. Journal of Mathematical Analysis and Applications, 2018, 463(1): 111-133.
    [8]
    张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326

    ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese)
    [9]
    郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305

    ZHENG Jingpan. The wave speed signs for bistable traveling wave solutions in 3-species competition-diffusion systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305.(in Chinese)
    [10]
    CHEN X, GUO J S. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[J]. Journal of Differential Equations, 2002, 184(2): 549-569.
    [11]
    CHEN X, GUO J S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Mathematische Annalen, 2003, 326(1): 123-146.
    [12]
    MA S W, ZOU X F. Propagation and its failure in a lattice delayed differential equation with global interaction[J]. Journal of Differential Equations, 2005, 212(1): 129-190.
    [13]
    WU C C. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model[J]. Journal of Differential Equations, 2017, 262(1): 272-282.
    [14]
    CHEN Y Y, GUU J S, HAMEL F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model[J]. Nonlinearity, 2016, 30(6): 2334-2359.
    [15]
    FU S C, GUO J S, WU C C. Traveling wave solutions for a discrete diffusive epidemic model[J]. Journal of Nonlinear Science, 2016, 31(10): 1739-1751.
    [16]
    SMITH H L. Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems[M]//Mathematical Surveys and Monographs, Vol 41. American Mathematical Society, 1995.
    [17]
    LIANG X, YI Y, ZHAO X Q. Spreading speeds and traveling waves for periodic evolution systems[J]. Journal of Differential Equations, 2006, 231(1): 57-77.
    [18]
    ZHANG F, ZHAO X Q. A periodic epidemic model in a patchy environment[J]. Journal of Mathematical Analysis and Applications, 2007, 325(1): 496-516.
    [19]
    LIANG X, ZHAO X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J]. Communications on Pure and Applied Mathematics: a Journal Issued by the Courant Institute of Mathematical Sciences, 2007, 60(1): 1-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (585) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return