Volume 43 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Jie, LI Xinying, YANG Zongkai, DA Hu. Effects of Time Delay on Bifurcation and Synchronization of Flux-Coupled and Chemically Coupled Neurons[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1336-1346. doi: 10.21656/1000-0887.420381
Citation: ZHANG Jie, LI Xinying, YANG Zongkai, DA Hu. Effects of Time Delay on Bifurcation and Synchronization of Flux-Coupled and Chemically Coupled Neurons[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1336-1346. doi: 10.21656/1000-0887.420381

Effects of Time Delay on Bifurcation and Synchronization of Flux-Coupled and Chemically Coupled Neurons

doi: 10.21656/1000-0887.420381
  • Received Date: 2021-12-07
  • Rev Recd Date: 2022-02-04
  • Available Online: 2022-11-28
  • Publish Date: 2022-12-01
  • Based on the chemical synaptic coupled neuron model, the differences and types of synchronization under inhibitory and excitatory conditions were discussed. According to the effect of the magnetic flow coupling on neuron discharge, the discharge states, bifurcation types and synchronization of the Morris-Lecar (ML) neuron models with time delay, magnetic flux coupling and chemical coupling, were analyzed. The results show that, the ML neuronal systems with magnetic flow coupling and chemical coupling can produce rich inverse periodic bifurcation or incremental periodic bifurcation behaviors under different parameters. The introduction of time delay, although can increase the periodicity of the system, will also break the system synchronization. Conversely, an appropriate coupling strength can enhance synchronization.

  • loading
  • [1]
    寿天德. 神经生物学[M]. 北京: 高等教育出版社, 2006.

    SHOU Tiande. Neurobiology[M]. Beijing: Higher Education Press, 2006. (in Chinese)
    [2]
    张艳娇, 李美生, 陆启韶. ML神经元的放电模式及时滞对神经元同步的影响[J]. 动力学与控制学报, 2009, 7(1): 19-23 doi: 10.3969/j.issn.1672-6553.2009.01.005

    ZHANG Yanjiao, LI Meisheng, LU Qishao. Effect of discharge mode delay of ML neurons on neuronal synchronization[J]. Journal of Dynamics and Control, 2009, 7(1): 19-23.(in Chinese) doi: 10.3969/j.issn.1672-6553.2009.01.005
    [3]
    MA J, ZHANG G, HAYAT T, et al. Mo del electrical activity of neuron under electric field[J]. Nonlinear Dynamics, 2019, 95: 1585-1598. doi: 10.1007/s11071-018-4646-7
    [4]
    MA J, WANG Y, WANG C, et al. Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation[J]. Chaos, Solitons and Fractals, 2017, 99: 219-255. doi: 10.1016/j.chaos.2017.04.016
    [5]
    LV M, MA J. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205: 375-381. doi: 10.1016/j.neucom.2016.05.004
    [6]
    曲良辉, 都琳, 胡海威, 等. 电磁刺激对FHN神经元系统的调控作用[J]. 动力学与控制学报, 2020, 18(1): 40-48 doi: 10.6052/1672-6553-2020-003

    QU Lianghui, DU Lin, HU Haiwei, et al. Regulation of FHN neuronal system by electromagnetic stimulation[J]. Journal of Dynamics and Control, 2020, 18(1): 40-48.(in Chinese) doi: 10.6052/1672-6553-2020-003
    [7]
    SOUDEH M, FAHIMEH N, SAJAD J, et al. Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow[J]. Applied Mathematics and Computation, 2019, 348: 42-56. doi: 10.1016/j.amc.2018.11.030
    [8]
    GUO S, XU Y, WANG C, et al. Collective response, synapse coupling and field coupling in neuronal network[J]. Chaos, Solitons and Fractals, 2017, 105: 120-127. doi: 10.1016/j.chaos.2017.10.019
    [9]
    王青云, 石霞, 陆启韶. 神经元耦合系统的同步动力学[M]. 北京: 科学出版社, 2008.

    WANG Qingyun, SHI Xia, LU Qishao. Synchronous Dynamics of Neuron Coupling Systems[M]. Beijing: Science Press, 2008. (in Chinese)
    [10]
    WANG Q, LU Q, ZHENG Y. Conduction delay-aided synchronization in two coupled Chay neurons with inhibitory synapse[J]. Journal of Biophysics, 2005, 21(6): 449-456.
    [11]
    WANG Q, LU Q, CHEN G, et al. Bifurcation and synchronization of synaptically coupled FHN models with time delay[J]. Chaos, Solitons and Fractals, 2007, 39(2): 918-925.
    [12]
    WANG Q, LU Q. Time-delay enhanced synchronization and regularization in two coupled chaotic neurons[J]. Chinese Physics Letters, 2005, 22(6): 543-546.
    [13]
    谢一丁, 王征平, 刘帅. 复杂网络上耦合神经系统的非聚类相同步[J]. 应用数学和力学, 2020, 41(6): 627-635

    XIE Yiding, WANG Zhengping, LIU Shuai. Unclustered phase synchronization of coupled nervous systems on complex networks[J]. Applied Mathematics and Mechanics, 2020, 41(6): 627-635.(in Chinese)
    [14]
    邬开俊, 单亚洲, 王春丽, 等. 时滞作用下的化学突触耦合的Hindmarsh-Rose神经元同步研究[J]. 力学季刊, 2017, 38(1): 123-134 doi: 10.15959/j.cnki.0254-0053.2017.01.014

    WU Kaijun, SHAN Yazhou, WANG Chunli, et al. Synchronization of chemical synaptic coupling with time delay in Hindmarsh-Rose neurons[J]. Chinese Quarterly of Mechanics, 2017, 38(1): 123-134.(in Chinese) doi: 10.15959/j.cnki.0254-0053.2017.01.014
    [15]
    DHAMALA M, JIRSA V, DING M. Enhancement of neural synchrony by time delay[J]. Physical Review Letters, 2004, 92(7): 074104. doi: 10.1103/PhysRevLett.92.074104
    [16]
    李小虎, 张定一, 宋自根. 时滞耦合惯性项神经系统的多混沌路径共存[J]. 应用数学和力学, 2020, 41(6): 636-645

    LI Xiaohu, ZHANG Dingyi, SONG Zigen. Coexistence of multiple chaotic paths in neural systems with time-delay coupled inertial terms[J]. Applied Mathematics and Mechanics, 2020, 41(6): 636-645.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (496) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return