Volume 43 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHAO Lizhi, FENG Xiaoli. The Inverse Source Problem for a Class of Stochastic Convection-Diffusion Equations[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1392-1401. doi: 10.21656/1000-0887.420399
Citation: ZHAO Lizhi, FENG Xiaoli. The Inverse Source Problem for a Class of Stochastic Convection-Diffusion Equations[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1392-1401. doi: 10.21656/1000-0887.420399

The Inverse Source Problem for a Class of Stochastic Convection-Diffusion Equations

doi: 10.21656/1000-0887.420399
  • Received Date: 2021-12-17
  • Accepted Date: 2022-02-12
  • Rev Recd Date: 2022-02-12
  • Available Online: 2022-11-07
  • Publish Date: 2022-12-01
  • The inverse source problem for a class of stochastic convection-diffusion equations driven by the fractional Brownian motion with the Hurst index, was considered. The direct problem is to study the solution to the stochastic convection-diffusion equation. The inverse problem is to determine the statistical properties of the source from the expectation and covariance of the final-time data. The direct problem is well-posed. The uniqueness and instability of the inverse source problem was proved. Some numerical simulation examples verify the theoretical analysis.

  • loading
  • [1]
    李晓晓, 郭亨贞, 万诗敏, 等. 一类对流-扩散方程热源识别反问题[J]. 兰州理工大学学报, 2012, 38(3): 147-149 doi: 10.3969/j.issn.1673-5196.2012.03.034

    LI Xiaoxiao, GUO Hengzhen, WAN Shimin, et al. A class of inverse problem of identification of heat source term in convection-diffusion equation[J]. Journal of Lanzhou University of Technology, 2012, 38(3): 147-149.(in Chinese) doi: 10.3969/j.issn.1673-5196.2012.03.034
    [2]
    贾现正, 张大利, 李功胜, 等. 空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132 doi: 10.12286/jssx.2014.2.113

    JIA Xianzheng, ZHANG Dali, LI Gongsheng, et al. Numerical inversion of the fractional orders in the space-time fractional advection-diffusion equation with variable coefficients[J]. Mathematica Numerica Sinica, 2014, 36(2): 113-132.(in Chinese) doi: 10.12286/jssx.2014.2.113
    [3]
    FURATI K M, IYIOLA O S, KIRANE M. An inverse problem for a generalized fractional diffusion[J]. Applied Mathmatics and Computation, 2014, 249: 24-31. doi: 10.1016/j.amc.2014.10.046
    [4]
    AMMARI H, BAO G, FLEMING J L. An inverse source problem for Maxwell’s equations in magnetoencephalography[J]. SIAM Journal on Applied Mathematics, 2002, 62(4): 1369-1382. doi: 10.1137/S0036139900373927
    [5]
    ANASTASIO M A, ZHANG J, MODGIL D, et al. Application of inverse source concepts to photoacoustic tomography[J]. Inverse Problems, 2007, 23(6): S21-S35. doi: 10.1088/0266-5611/23/6/S03
    [6]
    DEVANEY A J. Inverse source and scattering problems in ultrasonics[J]. IEEE Transaction on Sonics and Ultrasonics, 1983, 30(6): 355-363. doi: 10.1109/T-SU.1983.31440
    [7]
    MARENGO E A, DEVANEY A J. The inverse source problem of electromagnetics: linear inversion formulation and minimum energy solution[J]. IEEE Transaction on Antennas and Propagation, 1999, 47(2): 410-412. doi: 10.1109/8.761085
    [8]
    MARENGO E A, KHODJA M R, BOUCHERIF A. Inverse source problem in nonhomogeneous background media, Ⅱ: vector formulation and antenna substrate performance characterization[J]. SIAM Journal on Applied Mathematics, 2008, 69(1): 81-110. doi: 10.1137/070689875
    [9]
    LÜ Q. Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems[J]. Inverse Problems, 2012, 28(4): 045008. doi: 10.1088/0266-5611/28/4/045008
    [10]
    CHEN S L, WANG Z W, CHEN G L. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem[J]. Inverse Problems and Imaging, 2021, 15(4): 619-639.
    [11]
    TUAN N H, NANE E. Inverse source problem for time-fractional diffusion with discrete random noise[J]. Statistics and Probability Letters, 2017, 120: 126-134. doi: 10.1016/j.spl.2016.09.026
    [12]
    NIU P P, HELIN T, ZHANG Z D. An inverse random source problem in a stochastic fractional diffusion equation[J]. Inverse Problems, 2020, 36(4): 045002. doi: 10.1088/1361-6420/ab532c
    [13]
    LIU C. Reconstruction of the time-dependent source term in stochastic fractional diffusion equation[J]. Inverse Problems and Imaging, 2020, 14(6): 1001-1024. doi: 10.3934/ipi.2020053
    [14]
    FU S B, ZHANG Z D. Application of the generalized multiscale finite element method in an inverse random source problem[J]. Journal of Computational Physics, 2021, 429: 110032. doi: 10.1016/j.jcp.2020.110032
    [15]
    GONG Y X, LI P J, WANG X, et al. Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift[J]. Inverse Problems, 2021, 37: 045001. doi: 10.1088/1361-6420/abe6f0
    [16]
    LI P J, WANG X. An inverse random source problem for Maxwell’s equations[J]. SIAM Journal on Multiscale Modeling and Simulation, 2021, 19(1): 25-45. doi: 10.1137/20M1331342
    [17]
    LI P J, WANG X. An inverse random source problem for the one-dimensional Helmholtz equation with attenuation[J]. Inverse Problems, 2021, 37(1): 015009. doi: 10.1088/1361-6420/abcd43
    [18]
    FENG X L, LI P J, WANG X. An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion[J]. Inverse Problems, 2020, 36(4): 045008. doi: 10.1088/1361-6420/ab6503
    [19]
    NIE D X, DENG W H. An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion[EB/OL]. (2021-06-02)[2022-02-12]. https://arxiv.org/abs/2106.00917.
    [20]
    NIE D X, DENG W H. A unified convergence analysis for the fractional diffusion equation driven by fractional Gaussion noise with Hurst index H∈(0, 1)[J]. SIAM Journal on Numerical Analysis, 2022, 60(3): 1548-1573. doi: 10.1137/21M1422616
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (534) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return