Citation: | LI Jian. Bistable Periodic Traveling Wave Solutions to Lattice Competitive Systems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 471-479. doi: 10.21656/1000-0887.430071 |
[1] |
BAO X X, WANG Z C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system[J]. Journal of Differential Equations, 2013, 255: 2402-2435. doi: 10.1016/j.jde.2013.06.024
|
[2] |
FANG J, ZHAO X Q. Monotone wavefronts for partially degenerate reaction-diffusion systems[J]. Journal of Dynamics and Differential Equations, 2009, 21: 663-680. doi: 10.1007/s10884-009-9152-7
|
[3] |
LI B. Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems[J]. Journal of Differential Equations, 2012, 252(9): 4842-4861. doi: 10.1016/j.jde.2012.01.018
|
[4] |
ZHAO G Y, RUAN S G. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion[J]. Journal de Mathématiques Pures et Appliquées, 2011, 95(6): 627-671. doi: 10.1016/j.matpur.2010.11.005
|
[5] |
HAO Y X, LI W T, WANG J B. Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habits[J]. Journal of Differential Equations, 2021, 300: 185-225. doi: 10.1016/j.jde.2021.07.041
|
[6] |
BAO X X, LI W T, WANG Z C. Time periodic traveling curved fronts in the periodic Lotka-Volterra competition diffusion system[J]. Journal of Dynamics and Differential Equations, 2017, 29: 981-1016. doi: 10.1007/s10884-015-9512-4
|
[7] |
GUO J S, WU C H. Wave propagation for a two-component lattice dynamical system arising in strong competition models[J]. Journal of Differential Equations, 2011, 250: 3504-3533. doi: 10.1016/j.jde.2010.12.004
|
[8] |
GUO J S, WU C H. Traveling wave front for a two-component lattice dynamical system arising in competition models[J]. Journal of Differential Equations, 2012, 252: 4357-4391. doi: 10.1016/j.jde.2012.01.009
|
[9] |
WANG H Y, OU C H. Propagation direction of the traveling wave for the Lotka-Volterra competitive lattice system[J]. Journal of Dynamics and Differential Equations, 2021, 33: 1153-1174. doi: 10.1007/s10884-020-09853-4
|
[10] |
SHEN W X. Traveling waves in time periodic lattice differential equations[J]. Nonlinear Analysis, 2003, 54(2): 319-339. doi: 10.1016/S0362-546X(03)00065-8
|
[11] |
ZHANG K F, ZHAO X Q. Spreading speed and traveling waves for a spatially discrete SIS epidemic model[J]. Nonlinearity, 2008, 21(1): 97-112. doi: 10.1088/0951-7715/21/1/005
|
[12] |
KRUXZKOV S N. First order quasilinear equations in several independent variables[J]. Mathematics of the USSR-Sbornik, 1970, 10: 217-243. doi: 10.1070/SM1970v010n02ABEH002156
|
[13] |
GUO J S, HAMEL F. Front propagation for discrete periodic monostable equations[J]. Mathematische Annalen, 2006, 335: 489-525. doi: 10.1007/s00208-005-0729-0
|
[14] |
CHEN X F, GUO J S, WU C C. Traveling waves in discrete periodic media for bistable dynamics[J]. Archive for Rational Mechanics and Analysis, 2008, 189: 189-236. doi: 10.1007/s00205-007-0103-3
|
[15] |
陈妍. 时间周期的离散SIS模型的传播动力学[J]. 应用数学和力学, 2022, 43(10): 1155-1163. doi: 10.21656/1000-0887.420350
CHEN Yan. Propagation dynamics of a discrete SIS model with time periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163. (in Chinese) doi: 10.21656/1000-0887.420350
|
[16] |
郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093
ZHENG Jingpan. The wave speed signs for bistable traveling wave solutions in 3-species competition-diffusion systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305. (in Chinese) doi: 10.21656/1000-0887.420093
|
[17] |
SHEN W X. Traveling waves in time almost periodic structures governed by bistable nonlinearities, Ⅱ: existence[J]. Journal of Differential Equations, 1999, 159(1): 55-101. doi: 10.1006/jdeq.1999.3652
|
[18] |
WU S L, HSU C H. Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity[J]. Advances in Nonlinear Analysis, 2020, 9: 923-957.
|