Citation: | ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077 |
[1] |
JIROUSEK J, LEON N. A powerful finite element for plate bending[J]. Computer Methods in Applied Mechanics & Engineering, 1977, 12(1): 77-96.
|
[2] |
JIROUSEK J, VENKATESH A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1443-1472. doi: 10.1002/nme.1620350705
|
[3] |
QIN Q H, WANG H. MATLAB and C Programming for Trefftz Finite Element Methods[M]. Boca Raton: CRC Press, 2008.
|
[4] |
WANG H, QIN Q H. Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 487-498. doi: 10.1016/S0894-9166(09)60300-1
|
[5] |
SHE Z, WANG K Y, LI P C. Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method[J]. Composite Structures, 2019, 224: 110992. doi: 10.1016/j.compstruct.2019.110992
|
[6] |
WEISSER S. Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM[J]. Computers & Mathematics With Applications, 2014, 67(7): 1390-1406.
|
[7] |
ZHOU J C, WANG K Y, LI P C, MIAO X D. Hybrid fundamental solution based finite element method for axisymmetric potential problems[J]. Engineering Analysis With Boundary Elements, 2018, 91: 82-91. doi: 10.1016/j.enganabound.2018.03.009
|
[8] |
ZHOU J C, WANG K Y, LI P C. Hybrid fundamental solution based finite element method for axisymmetric potential problems with arbitrary boundary conditions[J]. Computers & Structures, 2019, 212: 72-85.
|
[9] |
秦庆华. Hybrid-Trefftz有限元法的研究进展[J]. 力学进展, 1998, 28(1): 71-82. doi: 10.3321/j.issn:1000-0992.1998.01.006
QIN Qinghua. Advances in hybrid-Trefftz finite element method[J]. Advances in Mechanics, 1998, 28(1): 71-82. (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.006
|
[10] |
王克用, 黄争鸣, 李培超, 等. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004
WANG Keyong, HUANG Zhengming, LI Peichao, et al. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.05.004
|
[11] |
CAO C Y, QIN Q H, YU A B. Micromechanical Analysis of heterogeneous composites using hybrid Trefftz FEM and hybrid fundamental solution based FEM[J]. Journal of Mechanics, 2013, 29(4): 661-674. doi: 10.1017/jmech.2013.54
|
[12] |
WANG H, QIN Q H. Fundamental-solution-based finite element model for plane orthotropic elastic bodies[J]. European Journal of Mechanics A: Solids, 2010, 29(5): 801-809. doi: 10.1016/j.euromechsol.2010.05.003
|
[13] |
CAO C Y, QIN Q H. Hybrid fundamental solution based finite element method: theory and applications[J]. Advances in Mathematical Physics, 2015, 2015: 916029.
|
[14] |
WANG K Y, ZHOU J C, ZENG R Y. Hybrid Trefftz finite element method for axisymmetric elasticity problems under torsion[J]. Materials Today Communications, 2021, 27: 102420. doi: 10.1016/j.mtcomm.2021.102420
|
[15] |
WANG H, LIN W, QIN Q H. Fundamental-solution-based hybrid finite element with singularity control for two-dimensional mixed-mode crack problems[J]. Engineering Analysis With Boundary Elements, 2019, 108: 267-278. doi: 10.1016/j.enganabound.2019.08.016
|
[16] |
周枫林, 谢贵重, 张见明, 等. 角度-距离复合变换法消除边界积分方程近奇异性[J]. 应用数学和力学, 2020, 41(5): 530-540. doi: 10.21656/1000-0887.400229
ZHOU Fenglin, XIE Guizhong, ZHANG Jianming, et al. Near-singularity cancellation with the angle-distance transformation method for boundary integral equations[J]. Applied Mathematics and Mechanics, 2020, 41(5): 530-540. (in Chinese) doi: 10.21656/1000-0887.400229
|
[17] |
GRABSKI J K, KARAGEORGHIS A. Moving pseudo-boundary method of fundamental solutions for nonlinear potential problems[J]. Engineering Analysis With Boundary Elements, 2019, 105: 78-86. doi: 10.1016/j.enganabound.2019.04.009
|
[18] |
GORZELAŃCZYK P, KOŁODZIEJ J A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods[J]. Engineering Analysis With Boundary Elements, 2008, 32(1): 64-75. doi: 10.1016/j.enganabound.2007.05.004
|
[19] |
潘文峰, 戴海. 具有双重虚拟边界的基本解方法求解Stokes问题[J]. 中国科技论文, 2018, 13(5): 563-567. doi: 10.3969/j.issn.2095-2783.2018.05.015
PAN Wenfeng, DAI Hai. Method of fundamental solutions with double fictitious boundaries for solving Stokes problems[J]. China Sciencepaper, 2018, 13(5): 563-567. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.05.015
|