Citation: | DU Caihong. Dynamics of a Diffusion Malaria Model With Vector-Bias[J]. Applied Mathematics and Mechanics, 2023, 44(3): 345-354. doi: 10.21656/1000-0887.430095 |
In order to explore the combined effects of seasonality, vector-bias and human diffusion on malaria transmission, a partially degenerate periodic reaction-diffusion model was considered. With the persistence theory for dynamical systems, the threshold dynamics for the system was established in terms of basic reproduction number
. That is, the disease will go extinct if
, while the disease will be uniformly persistent and break out seasonally for
. Numerical results show that, the neglect of spatial heterogeneity and vector-bias will lead to underestimation of the risk of disease spread.
[1] |
World Health Organization (WHO). 世界疟疾报告2022[EB/OL]. [2022-04-13]. https://www.who.int/zh/news-room/fact-sheets/detail/malaria.
|
[2] |
贾尚春, 邹铮, 徐伏牛. 全球气候变暖对疟疾传播的潜在影响[J]. 中国寄生虫病防治杂志, 2004, 17(1): 63-64 doi: 10.3969/j.issn.1673-5234.2004.01.020
JIA Shangchun, ZOU Zheng, XU Funiu. Potential impact of global warming on malaria transmission[J]. Chinese Journal of Parasitic Diseases Control, 2004, 17(1): 63-64.(in Chinese) doi: 10.3969/j.issn.1673-5234.2004.01.020
|
[3] |
DAN X, YONG L, WANG S Q, et al. Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China[J]. Malaria Journal, 2010, 9(1): 185.
|
[4] |
LACROIX R, MUKABANA W R, GOUAGNA L C, et al. Malaria infection increases attractiveness of humans to mosquitoes[J]. PLoS Biology, 2005, 3(9): e298.
|
[5] |
KESAVAN S K, REDDY N P. On the feeding strategy and the mechanics of blood sucking in insects[J]. Journal of Theoretical Biology, 1983, 105(4): 661-677.
|
[6] |
CHAMCHOD F, BRITTON N F. Analysis of a vector-bias model on malaria transmission[J]. Bulletin of Mathematical Biology, 2011, 73: 639-657.
|
[7] |
WANG X N, ZHAO X Q. A periodic vector-bias malaria model with incubation period[J]. SIAM Journal on Applied Mathematics, 2017, 77: 181-201.
|
[8] |
SMITH D L, DUSHOFF J, MCKENZIE F E. The risk of a mosquito-borne infection in a heterogeneous environment[J]. PLoS Biology, 2004, 2: 1957-1964.
|
[9] |
LOU Y J, ZHAO X Q. A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62: 543-568.
|
[10] |
BAI Z G, PENG R, ZHAO X Q. A reaction-diffusion malaria model with seasonality and incubition period[J]. Journal of Mathematical Biology, 2018, 77: 201-228.
|
[11] |
SHI Y Y, ZHAO H Y. Analysis of two-strain malaria transmission model with spatial heterogeneity and vector-bias[J]. Journal of Mathematical Biology, 2021, 82: 24.
|
[12] |
WANG C Y, WANG J. Analysis of a malaria epidemic model with age structure and spatial diffusion[J]. Zeitschrift fur Angewandte Mathematik and Physik, 2021, 72: 74.
|
[13] |
ZHANG Y, LIU S Y, BAI Z G. A periodic malaria model with two delays[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 541: 123327.
|
[14] |
GAO D Z, LOU Y J, RUAN S G. A periodic ross-Macdonald model in a patchy environment[J]. Discrete and Continuous Dynamical Systems (Series B), 2014, 19(10): 3133-3145.
|
[15] |
COSTANTINI C, LI S G, TOREE A D, et al. Density, survival and dispersal of anopheles gambiae complex mosquitoes in a west African Sudan savanna village[J]. Medical and Veterinary Entomology, 1996, 10(3): 203-219.
|
[16] |
MARTIN R H, SMITH H L. Abstract functional differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society, 1990, 321: 1-44.
|
[17] |
ZHAO X Q. Dynamical Systems in Population Biology[M]. 2nd ed. New York: Springer, 2017.
|
[18] |
郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2001: 1-550.
GUO Dajun. Nonlinear Functional Analysis[M]. Jinan: Shandong Science and Technology Press, 2001: 1-550. (in Chinese)
|
[19] |
WANG J L, WANG J. Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population[J]. Journal of Dynamics and Differential Equations, 2021, 33: 549-575.
|
[20] |
HALE J K. Asymptotic Behavior of Dissipative Systems[M]. Providence: American Mathematical Society, 1988.
|
[21] |
HESS P. Periodic Parabolic Boundary Value Problems and Positivity[M]. London: Longman Scientific and Technical, 1991: 1-139.
|
[22] |
THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal of Applied and Mathematics, 2009, 70(1): 188-211.
|
[23] |
YANG T H, ZHANG L. Remarks on basic reproduction ratios for periodic abstract functional differential equations[J]. Discrete and Continuous Dynamical Systems (Series B), 2019, 24: 6771-6782.
|
[24] |
LIANG X, ZHANG L, ZHAO X Q. The principal eigenvalue for degenerate periodic reaction-diffusion systems[J]. SIAM Journal of Mathematical Analysis, 2017, 49(5): 3603-3636.
|
[25] |
YU X, ZHAO X Q. A periodic reaction-advection-diffusion model for a stream population[J]. Journal of Differential Equations, 2015, 258(9): 3037-3062.
|
[26] |
PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. New York: Springer-Verlag, 1984.
|
[27] |
LI F X, ZHAO X Q. Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease[J]. Journal of Differential Equations, 2021, 272: 127-163.
|
[28] |
MAGAL P, ZHAO X Q. Global attractors and steady states for uniformly persistent dynamical systems[J]. SIAM Journal of Mathematical Analysis, 2005, 37: 251-275.
|
[29] |
WU R W, ZHAO X Q. A reaction-diffusion model of vector-borne disease with periodic delays[J]. Journal of Nonlinear Science, 2019, 29: 29-64.
|
[30] |
LIANG X, ZHANG L, ZHAO X Q. Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)[J]. Journal of Dynamical and Differential Equations, 2019, 31: 1247-1278.
|
[31] |
WANG K, ZHAO H Y, WANG H, et al. Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed delay[J]. Journal of Dynamics and Differential Equations, 2021. DOI: 10.1007/s10884-01-10062-w.
|
[32] |
张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326
ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese)
|
[33] |
陈妍. 时间周期的离散SIS模型的传播动力学[J]. 应用数学和力学, 2022, 43(10): 1155-1163
CHEN Yan. Propagation dynamics of a discrete SIS model with time periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163.(in Chinese)
|