Volume 44 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
DU Caihong. Dynamics of a Diffusion Malaria Model With Vector-Bias[J]. Applied Mathematics and Mechanics, 2023, 44(3): 345-354. doi: 10.21656/1000-0887.430095
Citation: DU Caihong. Dynamics of a Diffusion Malaria Model With Vector-Bias[J]. Applied Mathematics and Mechanics, 2023, 44(3): 345-354. doi: 10.21656/1000-0887.430095

Dynamics of a Diffusion Malaria Model With Vector-Bias

doi: 10.21656/1000-0887.430095
  • Received Date: 2022-03-21
  • Rev Recd Date: 2023-03-01
  • Available Online: 2023-03-14
  • Publish Date: 2023-03-15
  • In order to explore the combined effects of seasonality, vector-bias and human diffusion on malaria transmission, a partially degenerate periodic reaction-diffusion model was considered. With the persistence theory for dynamical systems, the threshold dynamics for the system was established in terms of basic reproduction number

    \begin{document}$\mathcal{R}_0$\end{document}

    . That is, the disease will go extinct if

    $\mathcal{R}_0<1$

    , while the disease will be uniformly persistent and break out seasonally for

    $\mathcal{R}_0>1$

    . Numerical results show that, the neglect of spatial heterogeneity and vector-bias will lead to underestimation of the risk of disease spread.

  • loading
  • [1]
    World Health Organization (WHO). 世界疟疾报告2022[EB/OL]. [2022-04-13]. https://www.who.int/zh/news-room/fact-sheets/detail/malaria.
    [2]
    贾尚春, 邹铮, 徐伏牛. 全球气候变暖对疟疾传播的潜在影响[J]. 中国寄生虫病防治杂志, 2004, 17(1): 63-64 doi: 10.3969/j.issn.1673-5234.2004.01.020

    JIA Shangchun, ZOU Zheng, XU Funiu. Potential impact of global warming on malaria transmission[J]. Chinese Journal of Parasitic Diseases Control, 2004, 17(1): 63-64.(in Chinese) doi: 10.3969/j.issn.1673-5234.2004.01.020
    [3]
    DAN X, YONG L, WANG S Q, et al. Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China[J]. Malaria Journal, 2010, 9(1): 185.
    [4]
    LACROIX R, MUKABANA W R, GOUAGNA L C, et al. Malaria infection increases attractiveness of humans to mosquitoes[J]. PLoS Biology, 2005, 3(9): e298.
    [5]
    KESAVAN S K, REDDY N P. On the feeding strategy and the mechanics of blood sucking in insects[J]. Journal of Theoretical Biology, 1983, 105(4): 661-677.
    [6]
    CHAMCHOD F, BRITTON N F. Analysis of a vector-bias model on malaria transmission[J]. Bulletin of Mathematical Biology, 2011, 73: 639-657.
    [7]
    WANG X N, ZHAO X Q. A periodic vector-bias malaria model with incubation period[J]. SIAM Journal on Applied Mathematics, 2017, 77: 181-201.
    [8]
    SMITH D L, DUSHOFF J, MCKENZIE F E. The risk of a mosquito-borne infection in a heterogeneous environment[J]. PLoS Biology, 2004, 2: 1957-1964.
    [9]
    LOU Y J, ZHAO X Q. A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62: 543-568.
    [10]
    BAI Z G, PENG R, ZHAO X Q. A reaction-diffusion malaria model with seasonality and incubition period[J]. Journal of Mathematical Biology, 2018, 77: 201-228.
    [11]
    SHI Y Y, ZHAO H Y. Analysis of two-strain malaria transmission model with spatial heterogeneity and vector-bias[J]. Journal of Mathematical Biology, 2021, 82: 24.
    [12]
    WANG C Y, WANG J. Analysis of a malaria epidemic model with age structure and spatial diffusion[J]. Zeitschrift fur Angewandte Mathematik and Physik, 2021, 72: 74.
    [13]
    ZHANG Y, LIU S Y, BAI Z G. A periodic malaria model with two delays[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 541: 123327.
    [14]
    GAO D Z, LOU Y J, RUAN S G. A periodic ross-Macdonald model in a patchy environment[J]. Discrete and Continuous Dynamical Systems (Series B), 2014, 19(10): 3133-3145.
    [15]
    COSTANTINI C, LI S G, TOREE A D, et al. Density, survival and dispersal of anopheles gambiae complex mosquitoes in a west African Sudan savanna village[J]. Medical and Veterinary Entomology, 1996, 10(3): 203-219.
    [16]
    MARTIN R H, SMITH H L. Abstract functional differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society, 1990, 321: 1-44.
    [17]
    ZHAO X Q. Dynamical Systems in Population Biology[M]. 2nd ed. New York: Springer, 2017.
    [18]
    郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2001: 1-550.

    GUO Dajun. Nonlinear Functional Analysis[M]. Jinan: Shandong Science and Technology Press, 2001: 1-550. (in Chinese)
    [19]
    WANG J L, WANG J. Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population[J]. Journal of Dynamics and Differential Equations, 2021, 33: 549-575.
    [20]
    HALE J K. Asymptotic Behavior of Dissipative Systems[M]. Providence: American Mathematical Society, 1988.
    [21]
    HESS P. Periodic Parabolic Boundary Value Problems and Positivity[M]. London: Longman Scientific and Technical, 1991: 1-139.
    [22]
    THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal of Applied and Mathematics, 2009, 70(1): 188-211.
    [23]
    YANG T H, ZHANG L. Remarks on basic reproduction ratios for periodic abstract functional differential equations[J]. Discrete and Continuous Dynamical Systems (Series B), 2019, 24: 6771-6782.
    [24]
    LIANG X, ZHANG L, ZHAO X Q. The principal eigenvalue for degenerate periodic reaction-diffusion systems[J]. SIAM Journal of Mathematical Analysis, 2017, 49(5): 3603-3636.
    [25]
    YU X, ZHAO X Q. A periodic reaction-advection-diffusion model for a stream population[J]. Journal of Differential Equations, 2015, 258(9): 3037-3062.
    [26]
    PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. New York: Springer-Verlag, 1984.
    [27]
    LI F X, ZHAO X Q. Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease[J]. Journal of Differential Equations, 2021, 272: 127-163.
    [28]
    MAGAL P, ZHAO X Q. Global attractors and steady states for uniformly persistent dynamical systems[J]. SIAM Journal of Mathematical Analysis, 2005, 37: 251-275.
    [29]
    WU R W, ZHAO X Q. A reaction-diffusion model of vector-borne disease with periodic delays[J]. Journal of Nonlinear Science, 2019, 29: 29-64.
    [30]
    LIANG X, ZHANG L, ZHAO X Q. Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)[J]. Journal of Dynamical and Differential Equations, 2019, 31: 1247-1278.
    [31]
    WANG K, ZHAO H Y, WANG H, et al. Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed delay[J]. Journal of Dynamics and Differential Equations, 2021. DOI: 10.1007/s10884-01-10062-w.
    [32]
    张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326

    ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese)
    [33]
    陈妍. 时间周期的离散SIS模型的传播动力学[J]. 应用数学和力学, 2022, 43(10): 1155-1163

    CHEN Yan. Propagation dynamics of a discrete SIS model with time periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (568) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return