Volume 43 Issue 5
May  2022
Turn off MathJax
Article Contents
YANG Hang, MA Li. Multimaterial Lattice Structures With Thermally Programmable Mechanical Behaviors[J]. Applied Mathematics and Mechanics, 2022, 43(5): 534-552. doi: 10.21656/1000-0887.430104
Citation: YANG Hang, MA Li. Multimaterial Lattice Structures With Thermally Programmable Mechanical Behaviors[J]. Applied Mathematics and Mechanics, 2022, 43(5): 534-552. doi: 10.21656/1000-0887.430104

Multimaterial Lattice Structures With Thermally Programmable Mechanical Behaviors

doi: 10.21656/1000-0887.430104
  • Received Date: 2022-03-28
  • Accepted Date: 2022-03-28
  • Rev Recd Date: 2022-04-10
  • Available Online: 2022-04-29
  • Publish Date: 2022-05-01
  • Traditional lattice structures usually maintain their mechanical properties throughout their lifetime. Designing and manufacturing intelligent materials with environmental adaptability, programmable sense and responses to external changes (such as light, pressure, solution, temperature, electromagnetic field and electrochemical reaction), shape transformation, mode conversion and performance regulation in space and time, are still important scientific challenges in the field of artificial materials. In this paper, multimaterial lattice structures with thermally programmable mechanical responses were proposed by means of polymer materials with disparate glass transition temperatures and temperature dependencies, and through reasonable design of the spatial distribution of the materials. By theoretical analysis combined with finite element simulation, the effects of the relative stiffnesses of constitute materials on Poisson’s ratios, deformation modes and structural stability of the multimaterial lattice structures, were studied. The elastic constants, crushing responses and structural stability of multimaterial lattice structures were regulated by temperature control, consequently the multimaterial lattice structures were endowed with giant thermal deformation, hyperelasticity and shape memory effects. This paper opens up new avenues for the design and manufacture of adaptive protection equipment, biomedical devices, aerospace morphing structures, flexible electronic devices, self-assembly structures and reconfigurable soft robots.

  • loading
  • [1]
    SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight metallic microlattices[J]. Science, 2011, 334(6058): 962-965. doi: 10.1126/science.1211649
    [2]
    ZHENG X, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2011, 334(6190): 1373-1377.
    [3]
    MEZA L R, DAS S, GREER J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202): 1322-1326. doi: 10.1126/science.1255908
    [4]
    MEZA L R, ZELHOFER A J, CLARKE N, et al. Resilient 3D hierarchical architected metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11502-11507. doi: 10.1073/pnas.1509120112
    [5]
    ZHENG X, SMITH W, JACKSON J, et al. Multiscale metallic metamaterials[J]. Nature Materials, 2016, 15: 1100-1106. doi: 10.1038/nmat4694
    [6]
    TANCOGNE-DEJEAN T, DIAMANTOPOULOU M, GORJI M B, et al. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness[J]. Advanced Materials, 2018, 30(45): 1803334. doi: 10.1002/adma.201803334
    [7]
    BERGER J B, WADLEY H N G, MCMEEKING R M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[J]. Nature, 2017, 543: 533-537. doi: 10.1038/nature21075
    [8]
    HAN S C, LEE J W, KANG K. A new type of low density material: shellular[J]. Advanced Materials, 2015, 27(37): 5506-5511. doi: 10.1002/adma.201501546
    [9]
    KASHANI H, ITO Y, HAN J, et al. Extraordinary tensile strength and ductility of scalable nanoporous graphene[J]. Science Advances, 2019, 5(2): eaat6951. doi: 10.1126/sciadv.aat6951
    [10]
    QI J, CHEN Z, JIANG P, et al. Recent progress in active mechanical metamaterials and construction principles[J]. Advanced Materials, 2022, 9(1): 2102662.
    [11]
    YANG C, BOORUGU M, DOPP A, et al. 4D printing reconfigurable, deployable and mechanically tunable metamaterials[J]. Materials Horizons, 2019, 6: 1244-1250. doi: 10.1039/C9MH00302A
    [12]
    WAGNER M A, LUMPE T S, CHEN T, et al. Programmable, active lattice structures: unifying stretch-dominated and bending-dominated topologies[J]. Extreme Mechanics Letters, 2019, 29: 100461. doi: 10.1016/j.eml.2019.100461
    [13]
    LEI M, HONG W, ZHAO Z, et al. 3D printing of auxetic metamaterials with digitally reprogrammable shape[J]. ACS Applied Materials and Interfaces, 2019, 11(25): 22768-22776. doi: 10.1021/acsami.9b06081
    [14]
    NIMMAGADDA C, MATLACK K H. Thermally tunable band gaps in architected metamaterial structures[J]. Journal of Sound and Vibration, 2019, 439: 29-42. doi: 10.1016/j.jsv.2018.09.053
    [15]
    DENG F, NGUYEN Q, ZHANG P. Multifunctional liquid metal lattice materials through hybrid design and manufacturing[J]. Additive Manufacturing, 2020, 33: 101117. doi: 10.1016/j.addma.2020.101117
    [16]
    KOTIKIAN A, MCMAHAN C, DAVIDSON E C, et al. Untethered soft robotic matter with passive control of shape morphing and propulsion[J]. Science Robotics, 2019, 4(33): eaax7044. doi: 10.1126/scirobotics.aax7044
    [17]
    WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nature Materials, 2015, 14: 1087-1098. doi: 10.1038/nmat4433
    [18]
    JACKSON J A, MESSNER M C, DUDUKOVIC N A, et al. Field responsive mechanical metamaterials[J]. Science Advances, 2018, 4(12): eaau6419. doi: 10.1126/sciadv.aau6419
    [19]
    KIM Y, YUK H, ZHAO R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558: 274-279. doi: 10.1038/s41586-018-0185-0
    [20]
    XU T, ZHANG J, SALEHIZADEH M, et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions[J]. Science Robotics, 2019, 4(29): eaav4494. doi: 10.1126/scirobotics.aav4494
    [21]
    CUI J, HUANG T, LUO Z, et al. Nanomagnetic encoding of shape-morphing micromachines[J]. Nature, 2019, 575: 164-168. doi: 10.1038/s41586-019-1713-2
    [22]
    ZE Q, KUANG X, WU S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4): e1906657. doi: 10.1002/adma.201906657
    [23]
    LI C, LAU G C, YUAN H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields[J]. Science Robotics, 2020, 5(49): eabb9822. doi: 10.1126/scirobotics.abb9822
    [24]
    WANG S, GAO Y, WEI A, et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics[J]. Nature Communications, 2020, 11: 4359. doi: 10.1038/s41467-020-18214-0
    [25]
    CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3): 234-241. doi: 10.1038/s41563-018-0268-1
    [26]
    ZHANG Q, KUANG X, WENG S, et al. Shape-memory balloon structures by pneumatic multi-material 4D printing[J]. Advanced Functional Materials, 2021, 31(21): 2010872. doi: 10.1002/adfm.202010872
    [27]
    HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al. A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2(8): eaan3028. doi: 10.1126/scirobotics.aan3028
    [28]
    RAFSANJANI A, ZHANG Y, LIU B, et al. Kirigami skins make a simple soft actuator crawl[J]. Science Robotics, 2018, 3(15): eaar7555. doi: 10.1126/scirobotics.aar7555
    [29]
    XIA X, AFSHAR A, PORTELA C M, et al. Electrochemically reconfigurable architected materials[J]. Nature, 2019, 573: 205-213. doi: 10.1038/s41586-019-1538-z
    [30]
    DEHGHANY M, ZHANG H, NAGHDABADI R, et al. A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels[J]. Journal of the Mechanics and Physics of Solids, 2018, 116: 239-266. doi: 10.1016/j.jmps.2018.03.018
    [31]
    LI S, DENG B, GRINTHAL A, et al. Liquid-induced topological transformations of cellular microstructures[J]. Science Robotics, 2021, 592: 386-391.
    [32]
    LIU J, GU T, SHAN S, et al. Harnessing buckling to design architected materials that exhibit effective negative swelling[J]. Advanced Materials, 2016, 28(31): 6619-6624. doi: 10.1002/adma.201600812
    [33]
    ZHANG H, GUO X, WU J, et al. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves[J]. Science Advances, 2018, 4(6): eaar8535. doi: 10.1126/sciadv.aar8535
    [34]
    TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352. doi: 10.1126/science.aaa2397
    [35]
    ROBERTSON I D, YOURDKHANI M, CENTELLAS P J, et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization[J]. Nature, 2018, 557: 223-227. doi: 10.1038/s41586-018-0054-x
    [36]
    BOLEY J W, REES W M, LISSANDRELLO C, et al. Shape-shifting structured lattices via multimaterial 4D printing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 20856-20862. doi: 10.1073/pnas.1908806116
    [37]
    SKYLAR-SCOTT M A, MUELLER J, VISSER C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782): 330-335. doi: 10.1038/s41586-019-1736-8
    [38]
    KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Nature, 2019, 363(6431): 1075-1079.
    [39]
    WEI K, CHEN H, PEI Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 173-191. doi: 10.1016/j.jmps.2015.10.004
    [40]
    XU H, FARAG A, PASINI D. Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion[J]. Acta Materialia, 2017, 134: 155-166. doi: 10.1016/j.actamat.2017.05.059
    [41]
    TANIKER S, CELLI P, PASINI D, et al. Temperature-induced shape morphing of bi-metallic structures[J]. International Journal of Solids and Structures, 2020, 190: 22-32. doi: 10.1016/j.ijsolstr.2019.10.024
    [42]
    GUO X, NI X, LI J, et al. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion[J]. Advanced Materials, 2020, 33(3): 2004919.
    [43]
    LIU L, QIAO C, AN H, et al. Encoding kirigami bi-materials to morph on target in response to temperature[J]. Scientific Reports, 2019, 9: 19499. doi: 10.1038/s41598-019-56118-2
    [44]
    BOATTI E, VASIOS N, BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials, 2017, 29(26): 1700360. doi: 10.1002/adma.201700360
    [45]
    NI X, GUO X, LI J, et al. 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion[J]. Advanced Materials, 2019, 31(48): 1905405. doi: 10.1002/adma.201905405
    [46]
    JANBAZ S, NAROOEI K, VAN MANEN T, et al. Strain rate-dependent mechanical metamaterials[J]. Science Advances, 2020, 6(25): eaba0616. doi: 10.1126/sciadv.aba0616
    [47]
    CHE K, YUAN C, QI H J, et al. Viscoelastic multistable architected materials with temperature-dependent snapping sequence[J]. Soft Matter, 2018, 14(13): 2492-2499. doi: 10.1039/C8SM00217G
    [48]
    YUAN C, MU X, DUNN C K, et al. Thermomechanically triggered two-stage pattern switching of 2D lattices for adaptive structures[J]. Advanced Functional Materials, 2018, 28(18): 1705727. doi: 10.1002/adfm.201705727
    [49]
    SONG C, JU J. Reconfigurable mesostructures with prestressing, reverse stiffness and shape memory effects[J]. Extreme Mechanics Letters, 2020, 35: 100625. doi: 10.1016/j.eml.2019.100625
    [50]
    SONG C, ZOU B, CUI Z, et al. Thermomechanically triggered reversible multi-transformability of a single material system by energy swapping and shape memory effects[J]. Advanced Functional Materials, 2021, 31(32): 2101395. doi: 10.1002/adfm.202101395
    [51]
    JEONG H Y, LEE E, HA S, et al. Multistable thermal actuators via multimaterial 4D printing[J]. Advanced Materials Technologies, 2018, 4(3): 1800495.
    [52]
    ZHAO Z, YUAN C, LEI M, et al. Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior[J]. Physical Review Applied, 2019, 11: 044074. doi: 10.1103/PhysRevApplied.11.044074
    [53]
    MUELLER J, LEWIS J A, BERTOLDI K. Architected multimaterial lattices with thermally programmable mechanical response[J]. Advanced Functional Materials, 2022, 32(1): 2105128. doi: 10.1002/adfm.202105128
    [54]
    王信涛. 三维有序负泊松比结构的设计、制备与力学性能表征[D]. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Xintao. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures[D]. PhD Thesis. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [55]
    YANG H, WANG B, MA L. Designing hierarchical metamaterials by topology analysis with tailored Poisson’s ratio and Young’s modulus[J]. Composite Structures, 2019, 214: 359-378. doi: 10.1016/j.compstruct.2019.01.076
    [56]
    YANG H, MA L. Design and characterization of axisymmetric auxetic metamaterials[J]. Composite Structures, 2020, 249: 112560. doi: 10.1016/j.compstruct.2020.112560
    [57]
    YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures[J]. International Journal of Solids and Structures, 2019, 180/181: 13-29. doi: 10.1016/j.ijsolstr.2019.07.007
    [58]
    YANG H, MA L. Impact resistance of additively manufactured 3D double-U auxetic structures[J]. Thin-Walled Structures, 2021, 169: 108373. doi: 10.1016/j.tws.2021.108373
    [59]
    YANG H, MA L. Multi-material 3D double-V metastructures with tailorable Poisson’s ratio and thermal expansion[J]. International Journal of Mechanical Sciences, 2021, 210: 106733. doi: 10.1016/j.ijmecsci.2021.106733
    [60]
    李明. 可调泊松比和热膨胀系数的双V结构设计和性能表征[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2021

    LI Ming. Composite double-V honeycombs with tailorable Poisson’s ratio and thermal expansion[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [61]
    HAGHPANAH B, SALARI-SHARIF L, POURRAJAB P, et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials, 2016, 28(36): 7915-7920. doi: 10.1002/adma.201601650
    [62]
    FRENZEL T, FINDEISEN C, KADIC M, et al. Tailored buckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 2016, 28(28): 5865-5870. doi: 10.1002/adma.201600610
    [63]
    YANG H, MA L. Multi-stable mechanical metamaterials with shape-reconfiguration and zero Poisson’s ratio[J]. Materials and Design, 2018, 152: 181-190. doi: 10.1016/j.matdes.2018.04.064
    [64]
    YANG H, MA L. Multi-stable mechanical metamaterials by elastic buckling instability[J]. Journal of Materials Science, 2019, 54: 3509-3526. doi: 10.1007/s10853-018-3065-y
    [65]
    YANG H, MA L. 1D and 2D snapping mechanical metamaterials with cylindrical topology[J]. International Journal of Solids and Structures, 2020, 204/205: 220-232. doi: 10.1016/j.ijsolstr.2020.08.023
    [66]
    YANG H, MA L. 1D to 3D multi-stable architected materials with zero Poisson’s ratio and controllable thermal expansion[J]. Materials and Design, 2020, 188: 108430. doi: 10.1016/j.matdes.2019.108430
    [67]
    YANG H, MA L. Angle-dependent transitions between structural bistability and multistability[J]. Advanced Engineering Materials, 2020, 22(5): 1900871. doi: 10.1002/adem.201900871
    [68]
    周益民. 基于双稳态机制的可调控热膨胀结构设计及其性能表征[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2021.

    ZHOU Yimin. Design and performance characterization of adjustable thermal expansion structure based on bistable mechanism[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [69]
    FINDEISEN C, HOHE J, KADIC M, et al. Characteristics of mechanical metamaterials based on buckling elements[J]. Journal of the Mechanics and Physics of Solids, 2017, 102: 151-164. doi: 10.1016/j.jmps.2017.02.011
    [70]
    RAFSANJANI A, AKBARAZADEH A, PASINI D. Snapping mechanical metamaterials under tension[J]. Advanced Materials, 2015, 27(39): 5931-5935. doi: 10.1002/adma.201502809
    [71]
    LI C W, TANG X, MUÑOZ J A, et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3[J]. Physical Review Letters, 2011, 107: 195504. doi: 10.1103/PhysRevLett.107.195504
    [72]
    TAKENAKA K, SHINODA T, INOUE N, et al. Giant negative thermal expansion in Fe-doped layered ruthenate ceramics[J]. Applied Physics Express, 2017, 10: 115501. doi: 10.7567/APEX.10.115501
    [73]
    EVANS J S O, MARY T A, Sleight A W. Negative thermal expansion in Sc2(WO4)3[J]. Journal of Solid State Chemistry, 1998, 137(1): 148-160. doi: 10.1006/jssc.1998.7744
    [74]
    EVANS J S O, MARY T A, VOGT T, et al. Negative thermal expansion in ZrW2O8 and HfW2O8[J]. Chemistry of Materials, 1996, 8(12): 2809-2823. doi: 10.1021/cm9602959
    [75]
    TAKENAKA K, TAKAGI H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005, 87(26): 261902. doi: 10.1063/1.2147726
    [76]
    KWON Y K, BERBER S, TOMÁNEK D. Thermal contraction of carbon fullerenes and nanotubes[J]. Physical Review Letters, 2004, 92(1): 015901. doi: 10.1103/PhysRevLett.92.015901
    [77]
    JIANG H, LIU B, HUANG Y, et al. Thermal expansion of single wall carbon nanotubes[J]. Journal of Engineering Materials and Technology, 2004, 126(3): 265-270. doi: 10.1115/1.1752925
    [78]
    GOODWIN A L, KEPERT C J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials[J]. Physical Review B, 2005, 71: 140301. doi: 10.1103/PhysRevB.71.140301
    [79]
    WEI K, PENG Y, WEN W, et al. Tailorable thermal expansion of lightweight and robust dual-constituent triangular lattice material[J]. Journal of Applied Mechanics, 2017, 84(10): 101006.
    [80]
    AI L, GAO X L. Three-dimensional metamaterials with a negative Poisson’s ratio and a non-positive coefficient of thermal expansion[J]. International Journal of Mechanical Sciences, 2018, 135: 101-113. doi: 10.1016/j.ijmecsci.2017.10.042
    [81]
    GDOUTOS E, SHAPIRO A A, DARAIO C. Thin and thermally stable periodic metastructures[J]. Experimental Mechanics, 2013, 53: 1735-1742. doi: 10.1007/s11340-013-9748-z
    [82]
    LI Y, CHEN Y, LI T, et al. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion[J]. Composite Structures, 2018, 189: 586-597. doi: 10.1016/j.compstruct.2018.01.108
    [83]
    XIE Y, PEI X, YU J. Double-layer sandwich annulus with ultra-low thermal expansion[J]. Composite Structures, 2018, 203: 709-717. doi: 10.1016/j.compstruct.2018.07.075
    [84]
    YAMAMOTO N, GDOUTOS E, TODA R, et al. Thin films with ultra-low thermal expansion[J]. Advanced Materials, 2014, 26(19): 3076-3080. doi: 10.1002/adma.201304997
    [85]
    LI X, GAO L, ZHOU W, et al. Novel 2D metamaterials with negative Poisson’s ratio and negative thermal expansion[J]. Extreme Mechanics Letters, 2019, 30: 100498. doi: 10.1016/j.eml.2019.100498
    [86]
    HA C S, HESTEKIN E, LI J H, et al. Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices[J]. Physica Status B: Basic Solid State Physics, 2015, 252(7): 1431-1434. doi: 10.1002/pssb.201552158
    [87]
    WU L, LI B, ZHOU J. Isotropic negative thermal expansion metamaterials[J]. ACS Applied Materials and Interfaces, 2016, 8(27): 17721-17727. doi: 10.1021/acsami.6b05717
    [88]
    TAKEZAWA A, KOBASHI M. Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing[J]. Composites Part B, 2017, 131: 21-29. doi: 10.1016/j.compositesb.2017.07.054
    [89]
    TAKEZAWA A, KOBASHI M, KITAMURA M. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing[J]. APL Materials, 2015, 3(7): 076103. doi: 10.1063/1.4926759
    [90]
    LENDLEIN A, KELCH S. Shape-memory polymers[J]. Angewandte Chemie International Edition, 2002, 41: 2034-2057. doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
    [91]
    LIU C, QIN H, MATHER P T. Review of progress in shape-memory polymers[J]. Journal of Materials Chemistry, 2007, 16: 1543-1558.
    [92]
    ZHAO Q, QI H J, XIE T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, 49/50: 79-120. doi: 10.1016/j.progpolymsci.2015.04.001
    [93]
    DING Z, YUAN C, PENG X, et al. Direct 4D printing via active composite materials[J]. Science Advances, 2017, 3(4): e1602890. doi: 10.1126/sciadv.1602890
    [94]
    DELAEY J, DUBRUEL P, VLIERBERGHE S V. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials, 2020, 30(44): 1909047. doi: 10.1002/adfm.201909047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (1421) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return