Citation: | SONG Xue, YANG Yunrui, YANG Lu. Periodic Traveling Wave Solutions of Time-Periodic SIR Epidemic Models With External Supplies[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1164-1176. doi: 10.21656/1000-0887.430108 |
The existence and non-existence of periodic traveling wave solutions of a class of time-periodic SIR epidemic models with external supplies were considered. Firstly, the appropriate upper and lower solutions of the auxiliary system were built and a closed convex cone was defined, the existence of periodic traveling waves was transformed into a fixed-point problem of the non-monotonic operator defined on the closed convex cone. The existence of periodic solutions of the auxiliary system was established under the Schauder fixed-point theorem, and the Arzela-Ascoli theorem was used to prove the existence of periodic traveling waves for the original model. Secondly, the non-existence of periodic traveling waves was obtained by analytic techniques.
[1] |
BRITTON N F. Reaction-Diffusion Equations and Their Applications to Biology[M]. San Diego: Academic Press, 1986.
|
[2] |
张秋. 一类具有非线性发生率与时滞的非局部扩散SIR模型的临界波的存在性[J]. 应用数学和力学, 2019, 40(7): 713-727
ZHANG Qiu. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727.(in Chinese)
|
[3] |
张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326
ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese)
|
[4] |
WANG X S, WANG H Y, WU J. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete and Continuous Dynamical Systems, 2012, 32(9): 3303-3324. doi: 10.3934/dcds.2012.32.3303
|
[5] |
WANG H Y, WANG X S. Travelling wave phenomena in a Kermack-McKendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1): 143-166. doi: 10.1007/s10884-015-9506-2
|
[6] |
ZHANG T R, WANG W D, WANG K F. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. Journal of Differential Equations, 2016, 260(3): 2763-2791. doi: 10.1016/j.jde.2015.10.017
|
[7] |
WANG Z C, ZHANG L, ZHAO X Q. Time periodic traveling waves for a periodic and diffusive SIR epidemic model[J]. Journal of Dynamics and Differential Equations, 2018, 30(1): 379-403. doi: 10.1007/s10884-016-9546-2
|
[8] |
WU W X, TENG Z D. The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence[J]. Chaos, Solitons and Fractals, 2021, 144: 110683. doi: 10.1016/j.chaos.2021.110683
|
[9] |
ZHAO G Y, RUAN S G. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion[J]. Journal de Mathematiques Pures et Appliquees, 2011, 95(6): 627-671. doi: 10.1016/j.matpur.2010.11.005
|
[10] |
BAO X X, WANG Z C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system[J]. Journal of Differential Equations, 2013, 255(8): 2402-2435. doi: 10.1016/j.jde.2013.06.024
|
[11] |
SHEN W X. Traveling waves in time periodic lattice differential equations[J]. Nonlinear Analysis: Methods and Applications, 2003, 54(2): 319-339. doi: 10.1016/S0362-546X(03)00065-8
|
[12] |
谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668
GU Yumeng, HUANG Mingdi. Existence of traveling wave solutions of a time-period time-delay competitive system[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668.(in Chinese)
|
[13] |
ZHANG L, WANG Z C, ZHAO X Q. Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality[J]. Journal of Evolution Equations, 2020, 20(3): 1029-1059. doi: 10.1007/s00028-019-00544-2
|
[14] |
HETHCOTE H. Qualitative analyses of communicable disease models[J]. Mathematical Biosciences, 1976, 28(3/4): 335-356.
|
[15] |
COOKE K. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1): 31-42.
|
[16] |
ZHOU K, HAN M A, WANG Q R. Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies[J]. Mathematical Methods in the Applied Sciences, 2017, 40(7): 2772-2783. doi: 10.1002/mma.4197
|
[17] |
WANG Z C, LI W T, RUAN S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays[J]. Journal of Differential Equations, 2006, 222(1): 185-232. doi: 10.1016/j.jde.2005.08.010
|
[18] |
FANG J, ZHAO X Q. Traveling waves for monotone semiflows with weak compactness[J]. SIAM Journal on Mathematical Analysis, 2014, 46(6): 3678-3704. doi: 10.1137/140953939
|
[19] |
TENG Z, LIU Y, ZHANG L. Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(8): 2599-2614. doi: 10.1016/j.na.2007.08.036
|
[20] |
KOCH-MEDINA P, DANERS D. Abstract Evolution Equations, Periodic Problems and Applications[M]. Longman Scientific Technical, 1992.
|
[21] |
LUNARDI A. Analytic Semigroups and Optimal Regularity in Parabolic Problems[M]. Boston: Birkhauser, 1995.
|
[22] |
BARNETT N, DRAGOMIR S. Some Landau type inequalities for functions whose derivatives are of locally bounded variation[J]. Tamkang Journal of Mathematics, 2006, 37(4): 301-308. doi: 10.5556/j.tkjm.37.2006.144
|