Citation: | HE Xiaoqiu, XIONG Yongliang, XU Shun, PENG Zerui, CHEN Bo. Numerical Simulation of the Quasi-2D Turbulence on a Half Soap Bubble Heated at the Bottom[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1086-1104. doi: 10.21656/1000-0887.430143 |
The soap bubble heated at the bottom was introduced as a novel quasi-2D turbulence system. The curved geometry of the bubble brings challenges for the direct numerical simulations (DNS) of the turbulence on the bubble. In order to overcome the difficulties due to the curved geometry, a numerical method based on the stereographic projection was implemented for the DNS of the soap bubble. The numerical methods to compute the spectrum, the flux and the structure functions of the flows on the bubble were described in detail. Three different Rayleigh numbers Ra=3×107,3×109,3×1011 were used in the simulation based on the present numerical methods. Then, the related spectrum, flux and structure functions were calculated. The results indicate that, both the inversed energy cascade and forward enstrophy cascade can be observed in all the calculation cases. The Bo59 scaling law fits the small-scale fluctuations on the soap bubble. With the increase of the Rayleigh number, the turbulent energy decreases for the large-scale plumes, and the kinetic energy increases for the higher wave number structures.
[1] |
LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42: 335-364. doi: 10.1146/annurev.fluid.010908.165152
|
[2] |
彭世彬, 郭瑞, 冯上升, 等. 主动冷却点阵夹层防热结构温度响应计算模型[J]. 应用数学和力学, 2022, 43(5): 477-489
PENG Shibin, GUO Rui, FENG Shangsheng, et al. A calculation model for temperature responses of active cooling lattice sandwich structures for thermal protection[J]. Applied Mathematics and Mechanics, 2022, 43(5): 477-489.(in Chinese)
|
[3] |
BOFFETTA G, ECKE R E. Two-dimensional turbulence[J]. Annual Review of Fluid Mechanics, 2012, 44: 427-451. doi: 10.1146/annurev-fluid-120710-101240
|
[4] |
宁利中, 张迪, 宁碧波, 等. 侧向局部加热对流的周期性[J]. 应用数学和力学, 2020, 41(2): 125-133
NING Lizhong, ZHANG Di, NING Bibo, et al. Periodicity of convection under lateral local heating[J]. Applied Mathematics and Mechanics, 2020, 41(2): 125-133.(in Chinese)
|
[5] |
宁利中, 张珂, 宁碧波, 等. 侧向加热腔体中的多圈型对流斑图[J]. 应用数学和力学, 2020, 41(3): 250-259
NING Lizhong, ZHANG Ke, NING Bibo, et al. Multi-roll type convection patterns in cavities heated laterally[J]. Applied Mathematics and Mechanics, 2020, 41(3): 250-259.(in Chinese)
|
[6] |
宁利中, 宁碧波, 胡彪, 等. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020, 41(10): 1146-1156
NING Lizhong, NING Bibo, HU Biao, et al. Growth and dynamics of convection patterns with horizontal flow[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1146-1156.(in Chinese)
|
[7] |
KRAICHNAN R H. Inertial ranges in two-dimensional turbulence[J]. Physics of Fluids, 1967, 10(7): 1417-1423. doi: 10.1063/1.1762301
|
[8] |
LEITH C E. Diffusion approximation for two-dimensional turbulence[J]. The Physics of Fluids, 1968, 11(3). DOI: 10.1063/1.1691968.
|
[9] |
BATCHELOR G K. Computation of the energy spectrum in homogeneous two-dimensional turbulence[J]. Physics of Fluids, 1969, 12(11): 233.
|
[10] |
施惟慧, 沈春, 王曰朋. 大气运动基本方程组的解析解[J]. 应用数学和力学, 2007, 28(3): 349-358 doi: 10.3321/j.issn:1000-0887.2007.03.011
SHI Weihui, SHEN Chun, WANG Yuepeng. Analytical solution of the basic equations set of atmospheric motion[J]. Applied Mathematics and Mechanics, 2007, 28(3): 349-358.(in Chinese) doi: 10.3321/j.issn:1000-0887.2007.03.011
|
[11] |
郭连红, 李远飞. 大尺度湿大气原始方程组对边界参数的连续依赖性[J]. 应用数学和力学, 2020, 41(9): 1036-1047
GUO Lianhong, LI Yuanfei. Continuous dependence on boundary parameters of the original equations for large scale wet atmosphere[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1036-1047.(in Chinese)
|
[12] |
KELLAY H, GOLDBURG W I. Two-dimensional turbulence: a review of some recent experiments[J]. Reports on Progress in Physics, 2002, 65(5): 845-894. doi: 10.1088/0034-4885/65/5/204
|
[13] |
KELLAY H. Hydrodynamics experiments with soap films and soap bubbles: a short review of recent experiments[J]. Physics of Fluids, 2017, 29(11): 111113. doi: 10.1063/1.4986003
|
[14] |
SEYCHELLES F, AMAROUCHENE Y, BESSAFI M, et al. Thermal convection and emergence of isolated vortices in soap bubbles[J]. Physics Review Letter, 2008, 100(14): 144501. doi: 10.1103/PhysRevLett.100.144501
|
[15] |
MEUEL T, XIONG Y L, FISCHER P, et al. Intensity of vortices: from soap bubbles to hurricanes[J]. Scientific Report, 2013, 3: 3455. doi: 10.1038/srep03455
|
[16] |
SEYCHELLES F, INGREMEAU F, PRADERE C, et al. From intermittent to nonintermittent behavior in two dimensional thermal convection in a soap bubble[J]. Physics Review Letter, 2010, 105(26): 264502. doi: 10.1103/PhysRevLett.105.264502
|
[17] |
MEUEL T, PRADO G, SEYCHELLES F, et al. Hurricane track forecast cones from fluctuations[J]. Scientific Report, 2012, 2: 446. doi: 10.1038/srep00446
|
[18] |
MEUEL T, COUDERT M, FISCHER P, et al. Effects of rotation on temperature fluctuations in turbulent thermal convection on a hemisphere[J]. Scientific Report, 2018, 8: 16513. doi: 10.1038/s41598-018-34782-0
|
[19] |
BRUNEAU C H, FISCHER P, XIONG Y L, et al. Numerical simulations of thermal convection on a hemisphere[J]. Physical Review Fluids, 2018, 3: 043502. doi: 10.1103/PhysRevFluids.3.043502
|
[20] |
XIONG Y L, FISCHER P, BRUNEAU C H. Numerical simulations of two-dimensional turbulent thermal convection on the surface of a soap bubble[C]//Proceedings of the 7th International Conference on Computational Fluid Dynamics. 2012: ICCFD7-3703.
|
[21] |
HE X Q, BRAGG A D, XIONG Y L, et al. Turbulence and heat transfer on a rotating, heated half soap bubble[J]. Journal of Fluid Mechanics, 2021, 924: A19. doi: 10.1017/jfm.2021.610
|
[22] |
STEVENS J A M R, CLERCX J H H, LOHSE D. Heat transport and flow structure in rotating Rayleigh-Bénard convection[J]. Journal of Computational Physics, 2013, 40: 41-49.
|
[23] |
许丁, 陈刚, 王娴, 等. 基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟[J]. 应用数学和力学, 2013, 34(9): 956-964 doi: 10.3879/j.issn.1000-0887.2013.09.009
XU Ding, CHEN Gang, WANG Xian, et al. Direct numerical simulation of the wall-bounded turbulent flow by lattice Boltzmann method based on multi-GPU[J]. Applied Mathematics and Mechanics, 2013, 34(9): 956-964.(in Chinese) doi: 10.3879/j.issn.1000-0887.2013.09.009
|
[24] |
沈露予, 陆昌根, 朱晓清. 自由来流湍流与三维壁面局部粗糙诱导平板边界层不稳定T-S波的数值研究[J]. 应用数学和力学, 2017, 38(11): 1208-1221
SHEN Luyu, LU Changgen, ZHU Xiaoqing. Numerical study of unstable T-S waves excited by interaction between free-stream turbulence and 3D localized wall roughness in flat-plate boundary layer[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1208-1221.(in Chinese)
|
[25] |
魏剑英, 葛永斌. 一种求解三维非稳态对流扩散反应方程的高精度有限差分格式[J]. 应用数学和力学, 2022, 43(2): 187-197
WEI Jianying, GE Yongbin. A high-order finite difference scheme for 3D unsteady convection diffusion reaction equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 187-197.(in Chinese)
|
[26] |
BOFFETTA G, MAZZINO A. Incompressible Rayleigh-Taylor turbulence[J]. Annual Review of Fluid Mechanics, 2017, 49: 119-143. doi: 10.1146/annurev-fluid-010816-060111
|