Volume 44 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHAO Shixiang, ZENG Xiangguo, WANG Yuntian, YAN Yigang. First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo[J]. Applied Mathematics and Mechanics, 2023, 44(2): 152-159. doi: 10.21656/1000-0887.430299
Citation: ZHAO Shixiang, ZENG Xiangguo, WANG Yuntian, YAN Yigang. First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo[J]. Applied Mathematics and Mechanics, 2023, 44(2): 152-159. doi: 10.21656/1000-0887.430299

First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo

doi: 10.21656/1000-0887.430299
  • Received Date: 2022-09-29
  • Rev Recd Date: 2022-12-31
  • Available Online: 2023-02-15
  • Publish Date: 2023-02-15
  • The adsorption behavior of impurity gases on the surface of alloy ZrCo has an important influence on its hydrogen storage performance. The adsorption behavior of O2 on the ZrCo(110) surface was investigated with the first principles based on the pseudopotential plane wave method. The results of adsorption energy and charge analysis show that, the most stable geometry configuration was B3 (the Zr—Co bridge site) where the adsorption energy was –8.124 eV. The analysis of the density of states and the differential charge density show that, the adsorption behavior of O2 on the ZrCo(110) surface is a strong chemical adsorption, where the oxygen-oxygen bond breaks. The essence of bonding between atom O and the ZrCo(110) surface atom is that the electron orbit of atom O overlaps with the electron orbit of the surface atom, i.e. the 2s and 2p orbital electrons of atom O overlapped with the 4p and 4d orbital electrons of atom Zr and the 3d orbital electrons of atom Co on the surface. The research results make senses in revealing the poisoning mechanism of alloy ZrCo in impurity gases.

  • loading
  • [1]
    REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311. doi: 10.1016/j.ijhydene.2016.11.195
    [2]
    高伟业, 张赛, 张杰, 等. 含湿相变粗糙多孔材质的热质耦合分形研究[J]. 应用数学和力学, 2022, 43(5): 561-568

    GAO Weiye, ZHANG Sai, ZHANG Jie, et al. Thermo-mass coupling fractal study of wet phase-change rough porous materials[J]. Applied Mathematics and Mechanics, 2022, 43(5): 561-568.(in Chinese)
    [3]
    董彦辰, 张业伟, 陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学, 2019, 40(9): 968-979

    DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979.(in Chinese)
    [4]
    ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14535-14552. doi: 10.1016/j.ijhydene.2016.05.293
    [5]
    RAJAURA R S, SRIVASTAVA S, SHARMA P K, et al. Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density[J]. Nano-Structures & Nano-Objects, 2018, 14: 57-65.
    [6]
    KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192. doi: 10.1016/j.ijhydene.2019.05.119
    [7]
    WANG F, LI R F, DING C P, et al. Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in international thermonuclear experimental reactor (ITER)[J]. Progress in Natural Science: Materials International, 2017, 27(1): 58-65. doi: 10.1016/j.pnsc.2016.12.018
    [8]
    LIANG Z Q, XIAO X Z, YAO Z D, et al. A new strategy for remarkably improving anti-disproportionation performance and cycling stabilities of ZrCo-based hydrogen isotope storage alloys by Cu substitution and controlling cutoff desorption pressure[J]. International Journal of Hydrogen Energy, 2019, 44(52): 28242-28251. doi: 10.1016/j.ijhydene.2019.09.077
    [9]
    YAO Z D, XIAO X Z, LIANG Z Q, et al. Improvement on the kinetic and thermodynamic characteristics of Zr1–xNbxCo (x = 0~0.2) alloys for hydrogen isotope storage and delivery[J]. Journal of Alloys and Compounds, 2019, 784: 1062-1070. doi: 10.1016/j.jallcom.2019.01.100
    [10]
    KOU H Q, SANG G, LUO W H, et al. Comparative study of full-scale thin double-layered annulus beds loaded with ZrCo, Zr0.8Hf0.2Co and Zr0.8Ti0.2Co for recovery and delivery of hydrogen isotopes[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10923-10933. doi: 10.1016/j.ijhydene.2015.06.153
    [11]
    ZHAO Y M, LI R F, TANG R H, et al. Effect of Ti substitution on hydrogen storage properties of Zr1−xTixCo (x = 0, 0.1, 0.2, 0.3) alloys[J]. Journal of Energy Chemistry, 2014, 23(1): 9-14. doi: 10.1016/S2095-4956(14)60111-X
    [12]
    WENG C C, XIAO X Z, HUANG X, et al. Effect of Mn substitution for Co on the structural, kinetic, and thermodynamic characteristics of ZrCo1–xMnx (x = 0~0.1) alloys for tritium storage[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28498-28506. doi: 10.1016/j.ijhydene.2017.09.157
    [13]
    GLUGLA M, LÄSSER R, DÖRR L, et al. The inner deuterium/tritium fuel cycle of ITER[J]. Fusion Energy and Design, 2003, 69: 39-43. doi: 10.1016/S0920-3796(03)00231-X
    [14]
    ZHANG G H, TANG T, SANG G, et al. Effect of Ti modification on hydrogenation properties of ZrCo in the presence of CO contaminant gas[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3366-3373.
    [15]
    GARRITY K F, BENNETT J W, RABE K M, et al. Pseudopotentials for high-throughput DFT calculations[J]. Computational Materials Science, 2014, 81: 446-452. doi: 10.1016/j.commatsci.2013.08.053
    [16]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17]
    CHATTARAJ D, PARIDA S C, DASH S, et al. Structural, electronic and thermodynamic properties of ZrCo and ZrCoH3: a first-principles study[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18952-18958. doi: 10.1016/j.ijhydene.2012.09.108
    [18]
    GACHON J C, SELHAOUI N, ABA B, et al. Comparison between measured and predicted enthalpies of formation[J]. Journal of Phase Equilibria, 1992, 13: 506-511. doi: 10.1007/BF02665763
    [19]
    WANG Q Q, KONG X G, YU Y, et al. Influence of the Fe-doping on hydrogen behavior on the ZrCo surface[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33877-33888. doi: 10.1016/j.ijhydene.2021.07.198
    [20]
    蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO2的密度泛函研究[J]. 物理学报, 2009, 58(12): 8224-8229 doi: 10.3321/j.issn:1000-3290.2009.12.017

    MENG Daqiao, LUO Wenhua, LI Gan, et al. Density functional study of CO2 adsorption on Pu(100) surface[J]. Acta Physica Sinica, 2009, 58(12): 8224-8229.(in Chinese) doi: 10.3321/j.issn:1000-3290.2009.12.017
    [21]
    DEVILLERS M, SIRCH M, PENZHORN R D. Hydrogen-induced disproportionation of the intermetallic zirconium-cobalt compound ZrCo[J]. Chemistry of Materials, 1992, 4(3): 631-639. doi: 10.1021/cm00021a025
    [22]
    CHEN Q, HUANG Z W, ZHAO Z D, et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRe (Re=Sc, Y, La) by first-principles calculations[J]. Computational Materials Science, 2013, 67: 196-202. doi: 10.1016/j.commatsci.2012.08.010
    [23]
    WANG L S, DING J, HUANG X, et al. Influence of Ti/Hf doping on hydrogen storage performance and mechanical properties of ZrCo compounds: a first principle study[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13328-13338. doi: 10.1016/j.ijhydene.2018.05.061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (328) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return