Volume 44 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LIAO Yu, ZHONG Guiyong, SHU Maosheng, BAI Lin, JIANG Xulai. A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. doi: 10.21656/1000-0887.430319
Citation: LIAO Yu, ZHONG Guiyong, SHU Maosheng, BAI Lin, JIANG Xulai. A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. doi: 10.21656/1000-0887.430319

A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material

doi: 10.21656/1000-0887.430319
  • Received Date: 2022-10-11
  • Rev Recd Date: 2023-01-13
  • Available Online: 2023-02-04
  • Publish Date: 2023-02-15
  • As more and more structural parts of military aircraft are formed with the additive manufacturing (AM) technology, it is very urgent to study the fatigue characteristics of the additive manufactured materials and structures. To investigate the fatigue life characteristics of the aluminum alloy and the titanium alloy manufactured with the selective laser melting (SLM) technology, a series of specimens with various structural details were designed and tested under the constant amplitude spectrum and the random spectrum. The basic reliable life of each test specimen was statistically analyzed and the reliable safety life curve was obtained. The fractography analysis shows that, more defects and mixed failure characteristics exist in the aluminum alloy specimens, while the fatigue scatter of the titanium alloy specimens is larger than that of forge pieces.

  • loading
  • [1]
    王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014, 57(22): 16-20

    WANG Xiangming, SU Yadong, WU bin. Application of additive manufacturing technology on aircraft structure development[J]. Aeronautical Manufacturing Technology, 2014, 57(22): 16-20.(in Chinese)
    [2]
    苏亚东, 吴斌, 王向明. 增材制造技术在航空装备深化应用中的研究[J]. 航空制造技术, 2016, 59(12): 42-48

    SU Yadong, WU bin, WANG Xiangming. Research on further application of additive manufacturing technology on aviation equipment[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 42-48.(in Chinese)
    [3]
    张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128 doi: 10.11868/j.issn.1001-4381.2016.02.019

    ZHANG Xuejun, TANG Siyi, ZHAO Hengyue, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2): 122-128.(in Chinese) doi: 10.11868/j.issn.1001-4381.2016.02.019
    [4]
    王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698

    WANG Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.(in Chinese)
    [5]
    林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111-1126 doi: 10.1360/N112014-00245

    LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015, 45(9): 1111-1126.(in Chinese) doi: 10.1360/N112014-00245
    [6]
    潘新, 张英伟, 刘艳梅, 等. 金属增材制造技术应用于军用飞机维修保障浅析[J]. 航空制造技术, 2021, 64(3): 34-43

    PAN Xin, ZHANG Yingwei, LIU Yanmei, et al. Applications of metal additive manufacturing technology in maintenance and support for military aircraft[J]. Aeronautical Manufacturing Technology, 2021, 64(3): 34-43.(in Chinese)
    [7]
    杨占尧, 赵敬云. 增材制造与3D打印技术及应用[M]. 北京: 清华大学出版社, 2017: 69-70.

    YANG Zhanyao, ZHAO Jingyun. Additive Manufacturing and 3D Printing Technology and Application[M]. Beijing: Tsinghua University Press, 2017: 69-70. (in Chinese)
    [8]
    顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 0500002 doi: 10.3788/CJL202047.0500002

    GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002.(in Chinese) doi: 10.3788/CJL202047.0500002
    [9]
    常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182 doi: 10.11896/cldb.19100153

    CHANG Kun, LIANG Enquan, ZHANG Ren, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports, 2021, 35(3): 3176-3182.(in Chinese) doi: 10.11896/cldb.19100153
    [10]
    邹田春, 陈敏英, 祝贺, 等. 激光选区熔化AlSi7Mg合金高周疲劳性能研究[J]. 激光与光电子学进展, 2020, 57(23): 234-241

    ZHOU Tianchun, CHEN Minying, ZHU He, et al. Research on high cycle fatigue performance of AlSi7Mg alloy fabricated by selective laser melting[J]. Laser and Optoelectronics Progress, 2020, 57(23): 234-241.(in Chinese)
    [11]
    孙文博, 马玉娥. 选区激光熔化TC4钛合金疲劳裂纹扩展行为研究[J]. 航空科学技术, 2022, 33(3): 71-76

    SUN Wenbo, MA Yu’e. Research on fatigue crack growth behavior of selective laser melted TC4 titanium alloy[J]. Aeronautics Science & Technology, 2022, 33(3): 71-76.(in Chinese)
    [12]
    张继奎, 孔祥艺, 马少俊, 等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021, 42(10): 525430

    ZHANG Jikui, KONG Xiangyi, MA Shaojun, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 525430.(in Chinese)
    [13]
    肖来荣, 谭威, 刘黎明, 等. 激光增材制造GH3536合金的低周疲劳行为[J]. 中国激光, 2021, 48(22): 2202009 doi: 10.3788/CJL202148.2202009

    XIAO Lairong, TAN Wei, LIU Liming, et al. Low cycle fatigue behavior of GH3536 alloy formed via laser additive manufacturing[J]. Chinese Journal of Lasers, 2021, 48(22): 2202009.(in Chinese) doi: 10.3788/CJL202148.2202009
    [14]
    薛志远. 选区激光熔化Inconel 625疲劳裂纹扩展行为研究[D]. 硕士学位论文. 南昌: 南昌航空大学, 2019.

    XUE Zhiyuan. Fatigue crack growth behavior of a selective laser melting Inconel 625[D]. Master Thesis. Nanchang: Nanchang Hangkong University, 2019. (in Chinese)
    [15]
    李亚, 易志坚, 王敏, 等. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 538-546

    LI Ya, YI Zhijian, WANG Min, et al. The stress intensity factor of a finite-width plate with a mode-Ⅰ center crack subjected to uniform stress on the crack surface near the crack tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 538-546.(in Chinese)
    [16]
    万华亮, 王奇志. 增材制造铝镁合金AlSi10Mg的疲劳性能研究[J]. 强度与环境, 2019, 46(3): 20-26 doi: 10.19447/j.cnki.11-1773/v.2019.03.004

    WAN Hualiang, WANG Qizhi. Research on the fatigue behavior of additive manufacture materials of AlSi10Mg[J]. Structure & Environment Engineering, 2019, 46(3): 20-26.(in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.03.004
    [17]
    刘建涛, 杜平安, 黄明镜, 等. 结构疲劳长裂纹扩展速率新模型研究[J]. 应用数学和力学, 2009, 30(5): 538-546 doi: 10.3879/j.issn.1000-0887.2009.05.004

    LIU Jiantao, DU Ping’an, HUANG Mingjing, et al. Research on new model of long fatigue crack propagation rates for structures[J]. Applied Mathematics and Mechanics, 2009, 30(5): 538-546.(in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.004
    [18]
    彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022, 43(9): 976-986

    PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43(9): 976-986.(in Chinese)
    [19]
    董彦民, 刘文珽, 杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报, 2010, 31(12): 2357-2364

    DONG Yanmin, LIU Wenting, YANG Chao. Military aircraft durability design method based on detail fatigue rating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2357-2364.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (467) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return