Volume 44 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LU Shuang, LI Dongbo, CHEN Jingbo, XI Bo. The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
Citation: LU Shuang, LI Dongbo, CHEN Jingbo, XI Bo. The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017

The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects

doi: 10.21656/1000-0887.440017
  • Received Date: 2023-01-20
  • Rev Recd Date: 2023-05-05
  • Publish Date: 2023-09-01
  • Based on the Hamiltonian variational principle, the 2D field equations and boundary conditions for flexoelectricity were derived, and the corresponding governing equations were obtained through substitution of the constitutive relation and geometric equations into the field equation. The in-plane tensile deformation, thickness-stretch deformation, symmetric thickness-shear deformation, and their coupled flexoelectric polarization of flexoelectric nanoplates caused by inhomogeneous temperature changes, were studied. The displacement fields and electric potential fields were solved with the double Fourier series method. The results demonstrate that, all fields are sensitive to the temperature load, which raises the prospect of controlling the mechanical and electrical behaviors of flexoelectric nanoplates by means of the temperature field. The effects of the thermal field and mechanical field on the displacement field were compared and examined. The work extends the Mindlin-Medick plate structure analysis theory in view of the flexoelectric and temperature effects, and provides a reference for the structural design of micro- and nano-scale devices.
  • loading
  • [1]
    YANG J, CHEN Z, HU Y. An exact analysis of a rectangular plate piezoelectric generator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 54(1): 190-195.
    [2]
    ERTURK A, INMAN D J. Piezoelectric Energy Harvesting[M]. New York: Wiley, 2011.
    [3]
    李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007

    LI Haitao, QIN Weiyang. Bifurcation and chaos thresholds of bistable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 652-662. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.06.007
    [4]
    李海涛, 丁虎, 陈立群, 等. 三稳态能量收集系统的同宿分岔及混沌动力学分析[J]. 应用数学和力学, 2020, 41(12): 1311-1322. doi: 10.21656/1000-0887.410164

    LI Haitao, DING Hu, CHEN Liqun, et al. Homoclinic bifurcations and chaos thresholds of tristable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322. (in Chinese) doi: 10.21656/1000-0887.410164
    [5]
    ZHOU P, ZHENG Z, WANG B, et al. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric[J]. Nano Energy, 2022, 99: 107400. doi: 10.1016/j.nanoen.2022.107400
    [6]
    TAN Y, YANG K, WANG B, et al. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application[J]. Nano Research, 2021, 14(11): 3969-3976. doi: 10.1007/s12274-021-3322-2
    [7]
    YANG J S, ZHANG X. Analysis of a thickness-shear piezoelectric transformer[J]. International Journal of Applied Electromagnetics and Mechanics, 2005, 21(2): 131-141. doi: 10.3233/JAE-2005-676
    [8]
    周强, 张志纯, 龙志林, 等. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

    ZHOU Qiang, ZHANG Zhichu, LONG Zhilin, et al. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
    [9]
    QU Y, JIN F, YANG J. Buckling of flexoelectric semiconductor beams[J]. Acta Mechanica, 2021, 232(7): 2623-2633. doi: 10.1007/s00707-021-02960-3
    [10]
    MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Physical Review B, 2008, 77(12): 125424. doi: 10.1103/PhysRevB.77.125424
    [11]
    梁旭, 尚红星, 邓谦, 等. 固体电介质中的挠曲电效应[J]. 固体力学学报, 2021, 42(1): 1-32. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.053

    LIANG Xu, SHANG Hongxing, DENG Qian, et al. Flexoelectric effect in solid dielectric[J]. Chinese Journal of Solid Mechanics, 2021, 42(1): 1-32. (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.053
    [12]
    MINDLIN R D. Polarization gradient in elastic dielectrics[J]. International Journal of Solids and Structures, 1968, 4(6): 637-642. doi: 10.1016/0020-7683(68)90079-6
    [13]
    MAJDOUB M S, SHARMA P, CAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78(12): 121407. doi: 10.1103/PhysRevB.78.121407
    [14]
    HU S, SHEN S. Electric field gradient theory with surface effect for nano-dielectrics[J]. Computers, Materials & Continua (CMC), 2009, 13(1): 63.
    [15]
    HU S, SHEN S. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect[J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(8): 1497-1504. doi: 10.1007/s11433-010-4039-5
    [16]
    SHEN S, HU S. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001
    [17]
    QU Y, JIN F, YANG J. Bending of a flexoelectric semiconductor plate[J]. Acta Mechanica Solida Sinica, 2022, 35(3): 434-445. doi: 10.1007/s10338-021-00296-y
    [18]
    MA W, CROSS L E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics[J]. Applied Physics Letters, 2003, 82(19): 3293-3295. doi: 10.1063/1.1570517
    [19]
    LI D B, YAN J Q, CHEN J B, et al. Magnetically-induced flexoelectric effects in the second-order extension of a composite fiber with piezomagnetic and flexoelectric layers[J]. International Journal of Applied Mechanics, 2021, 13(7): 2150083. doi: 10.1142/S1758825121500836
    [20]
    梁超, 张春利. 恒磁场作用下压磁/压电半导体复合圆柱壳的耦合响应分析[J]. 固体力学学报, 2020, 41(3): 206-215. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003003.htm

    LIANG Chao, ZHANG Chunli. Analysis of multi-field coupling responses of piezomagnetic/piezoelectric semiconductor cylindrical shell under a constant magnetic field[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 206-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003003.htm
    [21]
    GHOBADI A, BENI Y T, GOLESTANIAN H. Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field[J]. Archive of Applied Mechanics, 2020, 90(9): 2025-2070. doi: 10.1007/s00419-020-01708-0
    [22]
    蒋建平, 李东旭. 热载荷下压电复合板有限元建模与形变控制[J]. 力学学报, 2007, 39(4): 503-509. doi: 10.3321/j.issn:0459-1879.2007.04.011

    JIANG Jianping, LI Dongxu. Finite element modelling and shape control for piezoelectric composite plates under thermal load[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 503-509. (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.04.011
    [23]
    HADJESFANDIARI A R. Size-dependent thermoelasticity[J]. Latin American Journal of Solids and Structures, 2014, 11: 1679-1708. doi: 10.1590/S1679-78252014000900010
    [24]
    SAMANI M S E, BENI Y T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam[J]. Materials Research Express, 2018, 5(8): 085018.
    [25]
    CHU L, DUI G, ZHENG Y. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory[J]. European Journal of Mechanics A: Solids, 2020, 82: 103999.
    [26]
    QU Y, JIN F, YANG J. Temperature effects on mobile charges in thermopiezoelectric semiconductor plates[J]. International Journal of Applied Mechanics, 2021, 13(3): 2150037.
    [27]
    MINDLIN R D, MEDICK M A. Extensional vibrations of elastic plates[J]. Journal of Applied Mechanics, 1959, 26(4): 561-569.
    [28]
    QU Y, JIN F, YANG J. Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate[J]. Acta Mechanica, 2021, 232(11): 4533-4543.
    [29]
    MINDLIN R D. Mathematical theory of vibrations of elastic plates[C]// 10 th Annual Symposium on Frequency Control. Asbury Park, NJ, USA, 1956.
    [30]
    QU Y, JIN F, YANG J. Torsion of a flexoelectric semiconductor rod with a rectangular cross section[J]. Archive of Applied Mechanics, 2021, 91(5): 2027-2038.
    [31]
    QU Y, LI P, JIN F. A general dynamic model based on Mindlin's high-frequency theory and the microstructure effect[J]. Acta Mechanica, 2020, 231(9): 3847-3869.
    [32]
    WANG L, LIU S, FENG X, et al. Flexoelectronics of centrosymmetric semiconductors[J]. Nature Nanotechnology, 2020, 15(8): 661-667.
    [33]
    GAO X L, MALL S. Variational solution for a cracked mosaic model of woven fabric composites[J]. International Journal of Solids and Structures, 2001, 38(5): 855-874.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (352) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return