Citation: | CHEN Huijian, ZHU Qingfeng, MIAO Hongchen, FENG Zhiqiang. Numerical Study of Nonlinear Scattering Characteristics of SH0 Waves Encountering Cracks in Prestressed Plates[J]. Applied Mathematics and Mechanics, 2023, 44(4): 367-380. doi: 10.21656/1000-0887.440029 |
[1] |
SU Z Q, YE L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications[M]. Berlin: Spring Science & Business Media, 2009.
|
[2] |
刘瑶璐, 胡宁, 邓明晰, 等. 板壳结构中的非线性兰姆波[J]. 力学进展, 2017, 47: 201714. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201700014.htm
LIU Yaolu, HU Ning, DENG Mingxi, et al. Nonlinear Lamb waves in plate/shell structures[J]. Advances in Mechanics, 2017, 47: 201714. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201700014.htm
|
[3] |
孙迪, 朱武军, 项延训, 等. 微裂纹的非线性超声检测研究进展[J]. 科学通报, 2022, 67(7): 597-609. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202207003.htm
SUN Di, ZHU Wujun, XIANG Yanxun, et al. Advances in nonlinear ultrasonic detection of microcracks[J]. Chinese Science Bulletin, 2022, 67(7): 597-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202207003.htm
|
[4] |
MIAO H C, LI F X. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: a review[J]. Ultrasonics, 2021, 114: 106355. doi: 10.1016/j.ultras.2021.106355
|
[5] |
RAJAGOPAL P, LOWE M J S. Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through-thickness crack in an isotropic plate[J]. Journal of the Acoustical Society of America, 2007, 122(3): 1527-1538. doi: 10.1121/1.2764472
|
[6] |
RAJAGOPAL P, LOWE M J S. Angular influence on the scattering of fundamental shear horizontal guided waves by a through-thickness crack in an isotropic plate[J]. Journal of the Acoustical Society of America, 2008, 124(4): 2021-2030. doi: 10.1121/1.2968697
|
[7] |
RAJAGOPAL P, LOWE M J S. Scattering of the fundamental shear horizontal guided wave by a part-thickness crack in an isotropic plate[J]. Journal of the Acoustical Society of America, 2008, 124(5): 2895-2904. doi: 10.1121/1.2982410
|
[8] |
RATASSEPP M, LOWE M J S, CAWLEY P, et al. Scattering of the fundamental shear horizontal mode in a plate when incident at a through crack aligned in the propagation direction of the mode[J]. Journal of the Acoustical Society of America, 2008, 124(5): 2873-2882. doi: 10.1121/1.2987426
|
[9] |
陈洪磊, 刘增华, 李子明, 等. 有限单元法在超声导波检测技术中的应用[J]. 力学进展, 2020, 50: 202000. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000009.htm
CHEN Honglei, LIU Zenghua, LI Ziming, et al. Application of flnite element method in ultrasonic guided waves testing technique[J]. Advances in Mechanics, 2020, 50: 202000. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000009.htm
|
[10] |
戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327
DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. (in Chinese) doi: 10.21656/1000-0887.380327
|
[11] |
WEYLER R, OLIVER J, SAIN T, et al. On the contact domain method: a comparison of penalty and Lagrange multiplier implementations[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 205/208: 68-82. doi: 10.1016/j.cma.2011.01.011
|
[12] |
SHEN Y F, CESNIK C E S. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach[J]. Ultrasonics, 2017, 74: 106-123. doi: 10.1016/j.ultras.2016.10.001
|
[13] |
PAPADOPOULOS P, SOLBERG J M. A Lagrange multiplier method for the finite element solution of frictionless contact problems[J]. Mathematical and Computer Modelling, 1998, 28(4/8): 373-384.
|
[14] |
DE SAXCÉ G, FENG Z Q. New inequality and functional for contact with friction: the implicit standard material approach[J]. Mechanics of Structures and Machines, 1991, 19(3): 301-325. doi: 10.1080/08905459108905146
|
[15] |
DE SAXCÉ G, FENG Z Q. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modelling, 1998, 28(4/8): 225-245.
|
[16] |
CHEN H J, FENG Z Q, DU Y H, et al. Spectral finite element method for efficient simulation of nonlinear interactions between Lamb waves and breathing cracks within the bi-potential framework[J]. International Journal of Mechanical Science, 2022, 215: 106954. doi: 10.1016/j.ijmecsci.2021.106954
|
[17] |
BERNARDI C, MADAY Y, PATERA A. A new nonconforming approach to domain decomposition: the mortar element method[J]. Nonlinear Partial Differential Equations and Their Applications, 1994, 24: 13-51.
|
[18] |
CASADEI F, GABELLINI E, FOTIA G, et al. A mortar spectral finite element method for complex 2D and 3D elastodynamic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(45): 5119-5148. doi: 10.1016/S0045-7825(02)00294-3
|
[19] |
LI F L, ZOU F X. A hybrid spectral/finite element method for accurate and efficient modelling of crack-induced contact acoustic nonlinearity[J]. Journal of Sound and Vibration, 2021, 508: 116198. doi: 10.1016/j.jsv.2021.116198
|
[20] |
EHRL A, POPP A, GRAVEMEIER V, et al. A dual mortar approach for mesh tying within a variational multiscale method for incompressible flow[J]. International Journal for Numerical Methods in Fluids, 2014, 76(1): 1-27. doi: 10.1002/fld.3920
|
[21] |
CAVALIERI F J, CARDONA A. Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique[J]. Multibody System Dynamics, 2015, 35(4): 353-375.
|
[22] |
PUSO M A, LAURSEN T A. A mortar segment-to-segment contact method for large deformation solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6/8): 601-629.
|
[23] |
PUSO M A. A 3D mortar method for solid mechanics[J]. International Journal for Numerical Methods in Engineering, 2004, 59(3): 315-336.
|
[24] |
SIMO J C, LAURSEN T A. An augmented lagrangian treatment of contact problems involving friction[J]. Computers & Structures, 1992, 42(1): 97-116.
|
[25] |
FENG Z Q, JOLI P, CROS J M, et al. The bi-potential method applied to the modeling of dynamic problems with friction[J]. Computational Mechanics, 2005, 36(5): 375-383.
|
[26] |
周洋靖, 冯志强, 彭磊. 双势积分算法在非关联材料中的应用[J]. 应用数学和力学, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139
ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the bi-potential integration algorithm to non-associated materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. (in Chinese) doi: 10.21656/1000-0887.380139
|
[27] |
JOLI P, FENG Z Q. Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[J]. International Journal for Numerical Methods in Engineering, 2008, 73(3): 317-330.
|
[28] |
吴斌, 张也驰, 郑阳, 等. 超声导波有限元仿真中吸收边界设置及参数[J]. 北京工业大学学报, 2013, 39(12): 1777-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201312004.htm
WU Bin, ZHANG Yechi, ZHENG Yang, et al. Modeling and parameters of absorbing boundary for ultrasonic-guided wave in FE simulation[J]. Journal of Beijing University of Technology, 2013, 39(12): 1777-1783. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201312004.htm
|
[29] |
杨启航, 李林安, 李利青, 等. 基于变分模态分解的结构裂纹识别[J]. 应用数学和力学, 2022, 43(12): 1324-1335. doi: 10.21656/1000-0887.420338
YANG Qihang, LI Lin'an, LI Liqing, et al. Structural crack identification based on the variational mode decomposition[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1324-1335. (in Chinese) doi: 10.21656/1000-0887.420338
|
[30] |
WANG J S, XU C B, ZHAO Y X, et al. Characterization of microcrack orientation using the directivity of secondary sound source induced by an incident ultrasonic transverse wave[J]. Materials, 2020, 13(15): 3318.
|