Volume 44 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
HE Junyi, LI Feng, HU Qun, WANG Lipo. Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064
Citation: HE Junyi, LI Feng, HU Qun, WANG Lipo. Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064

Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation

doi: 10.21656/1000-0887.440064
  • Received Date: 2023-03-10
  • Rev Recd Date: 2023-05-12
  • Publish Date: 2023-09-01
  • An OpenFOAM-based solver for spray combustion simulation with the large eddy simulation (LES) and the flamelet generated manifold (FGM) method, was developed. A simple reduction of the temperature was employed to account for the evaporative heat loss. The solver was firstly validated against the Sydney piloted ethanol spray flame benchmark EtF7. The predicted mean gas temperature and droplet statistics correspond well with the experimental data and have similar accuracy to the spray flamelet model. The turbulence-chemistry interaction modeling may have a larger influence on the simulation accuracy. Then a realistic gas turbine slinger combustor was simulated with 2 sets of operating conditions. The simulation results reveal different flame characteristics of the 2 working conditions. The predicted total pressure losses are close to the measured values.
  • (Contributed by WANG Lipo, M. AMM Editorial Board)
  • loading
  • [1]
    GOUNDER J D, KOURMATZIS A, MASRI A R. Turbulent piloted dilute spray flames: flow fields and droplet dynamics[J]. Combustion and Flame, 2012, 159(11): 3372-3397. doi: 10.1016/j.combustflame.2012.07.014
    [2]
    YAN Y, ZHAO J, ZHANG J, et al. Large-eddy simulation of two-phase spray combustion for gas turbine combustors[J]. Applied Thermal Engineering, 2008, 28(11/12): 1365-1374.
    [3]
    JONES W, MARQUIS A, VOGIATZAKI K. Large-eddy simulation of spray combustion in a gas turbine combustor[J]. Combustion and Flame, 2014, 161(1): 222-239. doi: 10.1016/j.combustflame.2013.07.016
    [4]
    PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339. doi: 10.1016/0360-1285(84)90114-X
    [5]
    PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. doi: 10.1017/S0022112004008213
    [6]
    VREMAN A W, ALBRECHT B A, VAN OIJEN J A, et al. Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F[J]. Combustion and Flame, 2008, 153(3): 394-416. doi: 10.1016/j.combustflame.2008.01.009
    [7]
    NGUYEN P D, VERVISCH L, SUBRAMANIAN V, et al. Multidimensional flamelet-generated manifolds for partially premixed combustion[J]. Combustion and Flame, 2010, 157(1): 43-61. doi: 10.1016/j.combustflame.2009.07.008
    [8]
    CHEN J, LIU M, CHEN Y. Optimizing progress variable definition in flamelet-based dimension reduction in combustion[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1481-1498. doi: 10.1007/s10483-015-1997-7
    [9]
    LI T, KONG F, XU B, et al. Turbulent combustion modeling using a flamelet generated manifold approach: a validation study in openfoam[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1197-1210. doi: 10.1007/s10483-019-2503-6
    [10]
    MOIN P, APTE S V. Large-eddy simulation of realistic gas turbine combustors[J]. AIAA Journal, 2006, 44(4): 698-708. doi: 10.2514/1.14606
    [11]
    BABA Y, KUROSE R. Analysis and flamelet modelling for spray combustion[J]. Journal of Fluid Mechanics, 2008, 612: 45-79. doi: 10.1017/S0022112008002620
    [12]
    MA L, ROEKAERTS D. Modeling of spray jet flame under mild condition with non-adiabatic FGM and a new conditional droplet injection model[J]. Combustion and Flame, 2016, 165: 402-423. doi: 10.1016/j.combustflame.2015.12.025
    [13]
    KONG F, LI T, CHENG C, et al. Modeling of spray flame in gas turbine combustors with LES and FGM[J]. Fuel, 2022, 325: 124756. doi: 10.1016/j.fuel.2022.124756
    [14]
    GUTHEIL E, SIRIGNANO W A. Counterflow spray combustion modeling with detailed transport and detailed chemistry[J]. Combustion and Flame, 1998, 113(1/2): 92-105.
    [15]
    YI R, ZHANG X, CHEN C. Large eddy simulation of a turbulent dilute ethanol flame using the two-phase spray flamelet generated manifold approach[J]. Combustion Science and Technology, 2022. DOI: 10.1080/00102202.2022.2139612.
    [16]
    HU Y, KAI R, KUROSE R, et al. Large eddy simulation of a partially pre-vaporized ethanol reacting spray using the multiphase DTF/flamelet model[J]. International Journal of Multiphase Flow, 2020, 125: 103216. doi: 10.1016/j.ijmultiphaseflow.2020.103216
    [17]
    FRANZELLI B, VIÉ A, IHME M. On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[J]. Combustion Theory and Modelling, 2015, 19(6): 773-806. doi: 10.1080/13647830.2015.1099740
    [18]
    WANG Y, CAI R, SHAO C, et al. A priori and a posteriori studies of a novel spray flamelet tabulation methodology considering evaporation effects[J]. Fuel, 2023, 331(2): 125892.
    [19]
    GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765. doi: 10.1063/1.857955
    [20]
    BILGER R, STARNER S, KEE R. On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80(2): 135-149. doi: 10.1016/0010-2180(90)90122-8
    [21]
    CHRIGUI M, GOUNDER J, SADIKI A, et al. Partially premixed reacting acetone spray using les and fgm tabulated chemistry[J]. Combustion and Flame, 2012, 159(8): 2718-2741. doi: 10.1016/j.combustflame.2012.03.009
    [22]
    RANZ W, MARSHALL W. Evaporation from droplets[J]. Chemical Engineering Progress, 1952, 48(3): 141-146.
    [23]
    WEHRFRITZ A, KAARIO O, VUORINEN V, et al. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds[J]. Combustion and Flame, 2016, 167: 113-131. doi: 10.1016/j.combustflame.2016.02.019
    [24]
    KORNEV N, KRÖGER H, TURNOW J, et al. Synthesis of artificial turbulent fields with prescribed second-order statistics using the random-spot method[J]. PAMM: Proceedings in Applied Mathematics and Mechanics, 2007, 7(1): 2100047-2100048. doi: 10.1002/pamm.200700460
    [25]
    YAO T, PEI Y, ZHONG B J, et al. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations[J]. Fuel, 2017, 191: 339-349. doi: 10.1016/j.fuel.2016.11.083
    [26]
    曾川, 王洪铭, 单鹏. 微涡喷发动机离心甩油盘环形折流燃烧室的设计与实验研究[J]. 航空动力学报, 2003, 18(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301016.htm

    ZENG Chuan, WANG Hongming, SHAN Peng. The design and study of the annular combustion chamber with centrifugal fuel injection[J]. Journal of Aerospace Power, 2003, 18(1): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301016.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (308) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return