Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
YU Jiangong, WANG Kai, REN Xiaoqiang, WANG Xianhui, ZHANG Bo. Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144
Citation: YU Jiangong, WANG Kai, REN Xiaoqiang, WANG Xianhui, ZHANG Bo. Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1325-1340. doi: 10.21656/1000-0887.440144

Dispersion and Attenuation Characteristics of Fractional-Order Thermoelastic Guided Waves in Functionally Graded Piezoelectric Hollow Cylinders

doi: 10.21656/1000-0887.440144
  • Received Date: 2023-05-11
  • Rev Recd Date: 2023-08-21
  • Publish Date: 2023-11-01
  • Based on the fractional-order thermo-electric-elastic theory and the Legendre polynomial series method, a mathematical model for guided wave propagation in functionally graded hollow cylinders was established. The effects of the fractional order, the piezoelectric effect, and the radius-thickness ratio on the wave propagation, especially on its attenuation, were discussed. The numerical analysis results indicate that, the piezoelectric effect on attenuation mainly concentrates near the cutoff frequency and the mutation frequency, and causes the mutation frequency to shift forward. The fractional order has a great impact on the phase velocity and attenuation of the thermal wave mode, and has an opposite impact on the phase velocity around the crossover frequency point where the crossover mode occurs with the thermal wave velocity. But the thermal wave attenuation gradually decreases with the fractional order. Meanwhile, the 1st longitudinal mode attenuation is suppressed by the piezoelectric effect. However, the attenuation of other modes significantly increases, and the impact of the electrical open circuit is greater than that of the electrical short circuit.
  • loading
  • [1]
    沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224

    SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
    [2]
    LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
    [3]
    GREEN A E, LINDSAY K. Thermoelasticity[J]. Journal of elasticity, 1972, 2(1): 1-7. doi: 10.1007/BF00045689
    [4]
    GREEN A, NAGHDI P. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 253-264. doi: 10.1080/01495739208946136
    [5]
    段晓宇, 马永斌. 分数阶热弹理论下重力场对二维纤维增强介质的影响[J]. 应用数学和力学, 2021, 42(5): 452-459. doi: 10.21656/1000-0887.410125

    DUAN Xiaoyu, MA Yongbin. Effects of the gravity field on 2D fiber-reinforced media under the fractional order theory of thermoelasticity[J]. Applied Mathematics and Mechanics, 2021, 42(5): 452-459. (in Chinese) doi: 10.21656/1000-0887.410125
    [6]
    刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090

    LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. (in Chinese) doi: 10.21656/1000-0887.410090
    [7]
    ABD-ALLA A, ABO-DAHAB S, AHMED S, et al. Rayleigh surface wave propagation in an orthotropic rotating magneto-thermoelastic medium subjected to gravity and initial stress[J]. Mechanics of Advanced Materials and Structures, 2020, 27(16): 1400-1411. doi: 10.1080/15376494.2018.1512019
    [8]
    SHARMA J N, PAL M. Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate[J]. Journal of Sound & Vibration, 2004, 270(4/5): 587-610.
    [9]
    王现辉, 李方琳, 刘宇建, 等. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005007.htm

    WANG Xianhui, LI Fanglin, LIU Yujian, et al. Thermoelastic wave propagation in plates: an improved Legendre polynomial approach[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005007.htm
    [10]
    PENG W, CHEN L, HE T. Nonlocal thermoelastic analysis of a functionally graded material microbeam[J]. Applied Mathematics and Mechanics, 2021, 42(6): 855-870. doi: 10.1007/s10483-021-2742-9
    [11]
    HEYDARPOUR Y, MALEKZADEH P, DIMITRI R, et al. Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers[J]. Applied Sciences, 2020, 10(4): 1397. doi: 10.3390/app10041397
    [12]
    KHOSHGOFTAR M, ARANI A G, AREFI M. Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material[J]. Smart Materials and Structures, 2009, 18(11): 115007. doi: 10.1088/0964-1726/18/11/115007
    [13]
    DAI H L, JIANG H J. Analytical study for electromagnetothermoelastic behavior of a functionally graded piezoelectric solid cylinder[J]. Mechanics of Advanced Materials and Structures, 2013, 20(10): 811-818. doi: 10.1080/15376494.2012.676715
    [14]
    OOTAO Y, AKAI T, TANIGAWA Y. Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder[J]. Journal of Thermal Stresses, 2008, 31(10): 935-955. doi: 10.1080/01495730802250508
    [15]
    AREFI M, RAHIMI G. General formulation for the thermoelastic analysis of an arbitrary structure made of functionally graded piezoelectric materials, based on the energy method[J]. Mechanical Engineering, 2011, 62: 221-235.
    [16]
    EL-NAGGAR A, KISHKA Z, ABD-ALLA A, et al. On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(6): 1408-1417. doi: 10.1166/jctn.2013.2862
    [17]
    ZHU J, CHEN W, YE G, et al. Waves in fluid-filled functionally graded piezoelectric hollow cylinders: a restudy based on the reverberation-ray matrix formulation[J]. Wave Motion, 2013, 50(3): 415-427. doi: 10.1016/j.wavemoti.2012.10.006
    [18]
    LIU C, YU J, XU W, et al. Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory[J]. Meccanica, 2020, 55: 1153-1167. doi: 10.1007/s11012-020-01156-8
    [19]
    OTHMANI C, ZHANG H, LV C, et al. Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites: a review[J]. Composite Structures, 2022, 286: 115245.
    [20]
    ZHENG M, MA H, LYU Y, et al. Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism[J]. Composite Structures, 2021, 255: 112950.
    [21]
    CAO X, JIN F, JEON I. Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique[J]. NDT & E International, 2011, 44(1): 84-92.
    [22]
    SHATALOV M Y, EVERY A G, YENWONG-FAI A S. Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material[J]. International Journal of Solids & Structures, 2010, 46(3/4): 837-850.
    [23]
    WANG X H, LI F L, ZHANG B, et al. Wave propagation in thermoelastic inhomogeneous hollow cylinders by analytical integration orthogonal polynomial approach[J]. Applied Mathematical Modelling, 2021, 99: 57-80.
    [24]
    GUHA S, SINGH A K. Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces[J]. European Journal of Mechanics A: Solids, 2021, 88: 104242.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (191) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return