Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
DENG Tongxiang, KUANG Geping, HU Zhaocai, TANG Guangwu, YANG Qiang, GAO Bo. Topology Optimizations of Integrated Thermal Protection Systems in Multiple Reentry Load Cases[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1299-1310. doi: 10.21656/1000-0887.440163
Citation: DENG Tongxiang, KUANG Geping, HU Zhaocai, TANG Guangwu, YANG Qiang, GAO Bo. Topology Optimizations of Integrated Thermal Protection Systems in Multiple Reentry Load Cases[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1299-1310. doi: 10.21656/1000-0887.440163

Topology Optimizations of Integrated Thermal Protection Systems in Multiple Reentry Load Cases

doi: 10.21656/1000-0887.440163
  • Received Date: 2023-05-29
  • Rev Recd Date: 2023-06-21
  • Publish Date: 2023-11-01
  • The integrated thermal protection system (ITPS) needs to meet both load-bearing and heat-insulating requirements. In terms of the ITPS with a corrugated sandwich structure, this requires the connection structure of the ITPS to have high mechanical properties with low thermal conductivity. However, the re-entry environment is severe, how to reasonably design the connection structure is key to improve the performances of the ITPS. To solve this problem, 2 extreme load conditions corresponding to the maximum aerodynamic heat load and the maximum aerodynamic pressure load during the reentry process were comprehensively considered, the objective function was constructed with the minimized strain energy and the net heat transfer rate, the mass was used as a constraint, and the topology optimization of the ITPS connection structure was carried out. Then, the configuration obtained through the topology optimization was reconstructed and the thermal mechanical coupling analysis was carried out. The results show that, the maximum displacement of the top panel, the temperature of the bottom panel and the mass of the optimized connection structure were reduced effectively compared with those of the initial corrugated sandwich configuration and the topology optimization configuration in single load cases in the literatures. Due to the reduction of material consumption and the increase of the structural complexity, the stress level of the connection structure increases, but it still meets the requirements of use. This means that, the topology optimization strategy considering multiple reentry load cases can effectively improve the stiffness and the insulation capacity of the ITPS and alleviate the thermal short-circuiting of the structure. With the development of additive manufacturing and other related technologies, the topology optimization method has broad prospects in the design of the connection structures for the ITPS and other thermal structures.
  • (Contributed by TANG Guangwu, M. AMM Editorial Board)
  • loading
  • [1]
    WEI K, HE R J, CHENG X M, et al. Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels[J]. Materials & Design, 2014, 64: 91-95.
    [2]
    郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8): 428-440. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202208031.htm

    ZHENG Hui, QIU Lei, YUAN Shenfang, et al. Research on guided wave monitoring experimental method for high temperature airflow damage of C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 428-440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202208031.htm
    [3]
    BAPANAPALLI S K, MARTINEZ O, GOGU C, et al. Analysis and design of corrugated-core sandwich panels for thermal protection system of space vehicles[C]// 47th AIAA Structures, Structural Dynamics and Materials Conference, Newport, American Institute of Aeronautics and Astronautics. Newport, Rhode Island, 2006.
    [4]
    WEI K, CHENG X M, MO F H, et al. Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel[J]. Materials & Design, 2016, 111: 435-444.
    [5]
    LIANG H, WANG Y, TONG M, et al. Multi-scale strength analysis of bolted connections used in integral thermal protection system[J]. Chinese Journal of Aeronautics, 2018, 31(8): 1728-1740. doi: 10.1016/j.cja.2018.06.007
    [6]
    杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1): 47-56. http://www.applmathmech.cn/article/id/1021

    YANG Yazheng, YANG Jialing, FANG Daining. Research progress of thermal protection materials and structures for hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1): 47-56. (in Chinese) http://www.applmathmech.cn/article/id/1021
    [7]
    LE V T, HA N S, GOO N S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: a review[J]. Composites(Part B): Engineering, 2021, 226: 109301. doi: 10.1016/j.compositesb.2021.109301
    [8]
    YANG Q, GAO B, XU Z Y, et al. Topology optimisations for integrated thermal protection systems considering thermo-mechanical constraints[J]. Applied Thermal Engineering, 2019, 150: 995-1001. doi: 10.1016/j.applthermaleng.2019.01.067
    [9]
    彭世彬, 郭瑞, 冯上升, 等. 主动冷却点阵夹层防热结构温度响应计算模型[J]. 应用数学和力学, 2022, 43(5): 477-489. doi: 10.21656/1000-0887.420405

    PENG Shibin, GUO Rui, FENG Shangsheng, et al. A calculation model for temperature responses of active cooling lattice sandwich structures for thermal protection[J]. Applied Mathematics and Mechanics, 2022, 43(5): 477-489. (in Chinese) doi: 10.21656/1000-0887.420405
    [10]
    王琪, 吉庭武, 谢公南, 等. 轻质热防护系统波纹夹芯结构热力耦合分析[J]. 应用数学和力学, 2013, 34(2): 172-182. doi: 10.3879/j.issn.1000-0887.2013.02.007

    WANG Qi, JI Tingwu, XIE Gongnan, et al. Thermal-mechanical coupling analysis of corrugated sandwich structure of lightweight thermal protection system[J]. Applied Mathematics and Mechanics, 2013, 34(2): 172-182. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.02.007
    [11]
    CHEN Y, ZHANG L, HE C, et al. Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel[J]. Aerospace Science and Technology, 2021, 111: 106539. doi: 10.1016/j.ast.2021.106539
    [12]
    SHI S B, DAI C X, WANG Y F. Design and optimization of an integrated thermal protection system for space vehicles[C]// 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, American Institute of Aeronautics and Astronautics. Glasgow, Scotland, 2015: 3553.
    [13]
    XIE G, WANG Q, SUNDEN B, et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering, 2013, 59(1/2): 425-434.
    [14]
    YANG Q, MENG S H, XIE W H, et al. Effective mitigation of the thermal short and expansion mismatch effects of an integrated thermal protection system through topology optimization[J]. Composites(Part B): Engineering, 2017, 118: 149-157. doi: 10.1016/j.compositesb.2017.03.038
    [15]
    JIANG F, YE Z, YU W, et al. Analysis of reusable integrated thermal protection panel elements with various insulating core options[C]// 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Maryland, American Institute of Aeronautics and Astronautics. National Harbor, Maryland, 2014: 0351.
    [16]
    DEATON J D, GRANDHI R V. Stiffening of restrained thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 48(4): 731-745. doi: 10.1007/s00158-013-0934-5
    [17]
    DEATON J D, GRANDHI R V. Stress-based design of thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 253-270.
    [18]
    TAKEZAWA A, YOON G H, JEONG S H, et al. Structural topology optimization with strength and heat conduction constraints[J]. Computer Methods in Applied Mechanics & Engineering, 2014, 276: 341-361.
    [19]
    ZHANG W, YANG J, XU Y, et al. Topology optimization of thermoelastic structures: mean compliance minimization or elastic strain energy minimization[J]. Structural and Multidisciplinary Optimization, 2014, 49(3): 417-429.
    [20]
    WANG B, YAN J, CHENG G. Optimal structure design with low thermal directional expansion and high stiffness[J]. Engineering Optimization, 2011, 43(6): 581-595.
    [21]
    YANG Z H, ZHANG Y C, LIU S T, et al. Microstructural topology optimization for patch-based sandwich panel with desired in-plane thermal expansion and structural stiffness[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 779-795.
    [22]
    KIM W, GRANDHI R V, HANEY M. An evolutionary optimization method for designing a thermal protection system for dynamics[J]. Mechanics Based Design of Structures and Machines, 2006, 34(1): 1-24.
    [23]
    KIM W, GRANDHI R V, HANEY M. Multi-objective evolutionary optimization method for thermal protection system design[C]// 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, American Institute of Aeronautics and Astronautics. Austin, Texas, 2005: 2311.
    [24]
    PENMETSA R C, GRANDHI R V, HANEY M. Topology optimization for an evolutionary design of a thermal protection system[J]. AIAA Journal, 2012, 44(11): 2663-2671.
    [25]
    XU Q, LI S, MENG Y. Optimization and re-design of integrated thermal protection systems considering thermo-mechanical performance[J]. Applied Sciences, 2021, 11(15): 6916.
    [26]
    杨强. 一体化热防护系统设计与综合效能评估方法研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2013.

    YANG Qiang. Design and performance evaluation method of integrated thermal protection systems[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [27]
    杜鹏. 大型箱体结构拓扑优化设计研究[D]. 硕士学位论文. 郑州: 郑州大学, 2016.

    DU Peng. A research on topology optimization design of large-scale box structure[D]. Master Thesis. Zhengzhou: Zhengzhou University, 2016. (in Chinese)
    [28]
    叶红玲, 隋允康. 基于ICM方法三维连续体结构拓扑优化[J]. 固体力学学报, 2006, 27(4): 387-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200604010.htm

    YE Hongling, SUI Yunkang. ICM based topological optimization of 3D continuum structure[J]. Chinese Journal of Solid Mechanics, 2006, 27(4): 387-393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200604010.htm
    [29]
    方子帆, 杨磊, 杜道佳, 等. 支撑结构多目标拓扑优化设计研究[J]. 中国机械工程, 2010, 21(15): 1836-1839. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201015018.htm

    FANG Zifan, YANG Lei, DU Daojia, et al. Research on topology optimization design for support structure[J]. Chinese Mechanical Engineering, 2010, 21(15): 1836-1839. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201015018.htm
    [30]
    BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9/10): 635-654.
    [31]
    MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of current and proposed thermal protection system (TPS) concepts[C]// 33rd Thermophysics Conference, Norfolk, American Institute of Aeronautics and Astronautics. Norfolk, VA, 1999.
    [32]
    KRYSKO A V, AWREJCEWICZ J, PAVLOV S P, et al. Topological optimization of thermoelastic composites with maximized stiffness and heat transfer[J]. Composites(Part B): Engineering, 2019, 158: 319-327.
    [33]
    SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573.
    [34]
    钛及钛合金棒材: GB/T 2965—2007[S]. 北京: 中国标准出版社, 2007.

    Titanium and titanium alloy bars: GB/T 2965—2007[S]. Beijing: Standards Press of China, 2007. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (266) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return