Citation: | PENG Yi, ZHANG Zhengqi, LI Qiang, YANG Guangwei. A Random Forest Evaluation Model for Pavement Skid Resistance Based on Comprehensive Fractal[J]. Applied Mathematics and Mechanics, 2024, 45(4): 443-457. doi: 10.21656/1000-0887.440244 |
[1] |
赵雪涛. 公路路面摩擦系数检测与评价方法研究[J]. 交通世界, 2019, 23(8): 56-58. doi: 10.3969/j.issn.1006-8872.2019.08.022
ZHAO Xuetao. Research on testing and evaluation methods for friction coefficient of highway pavements[J]. Transpo World, 2019, 23(8): 56-58. (in Chinese) doi: 10.3969/j.issn.1006-8872.2019.08.022
|
[2] |
PAN B H, CHAI H, LU B. Determination of the friction coefficients of icy pavements under different amounts of snowfall[J]. Journal of Visualized Experiments, 2023(191): e63769.
|
[3] |
宋江春, 李明亮, 李俊, 等. 排水沥青路面抗滑性能评价指标研究[J]. 现代交通技术, 2020, 17(3): 11-16. doi: 10.3969/j.issn.1672-9889.2020.03.003
SONG Jiangchun, LI Mingliang, LI Jun, et al. Study on evaluation index of skidding performance in porous pavement[J]. Modern Transportation Technology, 2020, 17(3): 11-16. (in Chinese) doi: 10.3969/j.issn.1672-9889.2020.03.003
|
[4] |
刘俊卿, 韩晶. 基于模糊数学理论的沥青路面结构可靠度分析[J]. 应用数学和力学, 2018, 39(9): 1081-1090. doi: 10.21656/1000-0887.380278
LIU Junqing, HAN Jing. Reliability analysis of asphalt pavement structure based on the fuzzy mathematics theory[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1081-1090. (in Chinese) doi: 10.21656/1000-0887.380278
|
[5] |
黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm
HUANG Xiaoming, ZHENG Binshuang. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm
|
[6] |
KOUCHAKI S, ROSHANI H, PROZZI J A, et al. Field investigation of relationship between pavement surface texture and friction[J]. Transportation Research Record, 2018, 2672(40): 1-13. doi: 10.1177/0361198118767415
|
[7] |
UECKERMANN A, WANG D, OESER M. A contribution to non-contact skid resistance measurement[J]. International Journal of Pavement Engineering, 2014, 16(7): 646-659.
|
[8] |
MEEGODA J N, GAO S Y. Evaluation of pavement skid resistance using high speed texture measurement[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(6): 382-390. doi: 10.1016/j.jtte.2015.09.001
|
[9] |
丁世海, 战友, 阳恩慧, 等. 基于高精度激光断面高程的沥青路面MTD测量[J]. 东南大学学报(自然科学版), 2020, 50(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm
DING Shihai, ZHAN You, YANG Enhui, et al. MTD measurement of asphalt pavement based on high precision laser section elevation[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(1): 137-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm
|
[10] |
AHMAD A, OMAR S, GEORGES B S, et al. Pavement friction modeling using texture measurements and pendulum skid tester[J]. Transportation Research Record, 2018, 2672(40): 1-12. doi: 10.1177/0361198118767415
|
[11] |
LIU Q F, SHALABY A. Relating concrete pavement noise and friction to three-dimensional texture parameters[J]. International Journal of Pavement Engineering, 2017, 18(5): 450-458. doi: 10.1080/10298436.2015.1095897
|
[12] |
HU L Q, YUN D, LIU Z Z, et al. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface[J]. Construction & Building Materials, 2016, 126: 720-729.
|
[13] |
PANAGOULI O K, KOKKALIS A G. Skid resistance and fractal structure of pavement surface[J]. Chaos, Solitons & Fractals, 1998, 9(3): 493-505.
|
[14] |
KOKKALIS A G, PANAGOULI O K. Fractal evaluation of pavement skid resistance variations Ⅰ: surface wetting[J]. Chaos, Solitons & Fractals, 1998, 9(11): 1875-1890.
|
[15] |
UECKERMANN A, WANG D, OESER M, et al. Calculation of skid resistance from texture measurements [J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(1): 3-16. doi: 10.1016/j.jtte.2015.01.001
|
[16] |
HARTIKAINEN L, PETRY F, WESTERMANN S. Frequency-wise correlation of the power spectral density of asphalt surface roughness and tire wet friction[J]. Wear, 317(1/2): 111-119.
|
[17] |
KANAFI M M, TUONONENA J. Top topography surface roughness power spectrum for pavement friction evaluation[J]. Tribology International, 2017, 107: 240-249. doi: 10.1016/j.triboint.2016.11.038
|
[18] |
KOKKALIS A G, TSOHOS G H, PANAGOULI O K. Consideration of fractals potential in pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2002, 128(6): 591-595. doi: 10.1061/(ASCE)0733-947X(2002)128:6(591)
|
[19] |
VILLANI M M, SCARPAS A, BONDT A, et al. Application of fractal analysis for measuring the effects of rubber polishing on the friction of asphalt concrete mixtures[J]. Wear, 2014, 320: 179-188. doi: 10.1016/j.wear.2014.08.013
|
[20] |
ZHONG K, SUN M Z, LIU Z X, et al. Research on dynamic evaluation model and early warning technology of anti-sliding risk for the airport pavement[J]. Construction and Building Materials, 2020, 239: 117820. doi: 10.1016/j.conbuildmat.2019.117820
|
[21] |
WANG K F, LI Y, ZHU Y S, et al. Research on characteristics of macrotexture for colored anti-skid coating on pavement based on fractal theory[J]. Transportation Research Record, 2022, 2676(6): 129-140. doi: 10.1177/03611981211072811
|
[22] |
LIU C, ZHAN Y, DENG Q S, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021, 178: 109376.
|
[23] |
NAYAK S R, MISHRA J, PALAI G. Analysing roughness of surface through fractal dimension: a review[J]. Image and Vision Computing, 2019, 89: 21-34.
|
[24] |
ISSA M A, ISSA M A, ISLAM M S, et al. Fractal dimension: a measure of fracture roughness and toughness of concrete[J]. Engineering Fracture Mechanics, 2003, 70(1): 125-137.
|
[25] |
冉茂平, 肖旺新, 周兴林, 等. 基于三维分形维数的沥青路面抗滑性能研究[J]. 公路交通科技, 2016, 33(2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602006.htm
RAN Maoping, XIAO Wangxin, ZHOU Xinglin, et al. Research of skid resistance of asphalt pavement based on 3D fractal dimension[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602006.htm
|
[26] |
童申家, 谢祥兵, 赵大勇. 沥青路面纹理分布的分形描述及抗滑性能评价[J]. 中国公路学报, 2016, 29(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602002.htm
TONG Shenjia, XIE Xiangbing, ZHAO Dayong. Fractal description of texture distribution and evaluation of skid-resistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602002.htm
|
[27] |
钱振东, 薛永超, 张令刚. 沥青路面三维纹理分形维数及其抗滑性能[J]. 中南大学学报(自然科学版), 2016, 47(10): 3590-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm
QIAN Zhendong, XUE Yongchao, ZHANG Linggang. 3-D textural fractal dimension and skid resistance of asphalt pavement[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3590-3596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm
|
[28] |
LI L, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1): 49-62.
|
[29] |
DING S, WANG K C P, YANG E, et al. Influence of effective texture depth on pavement friction based on 3D texture area[J]. Construction and Building Materials, 2021, 287: 123002.
|
[30] |
LIU C, ZHAN Y, DENG Q S, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021, 178: 109376.
|
[31] |
GUO W, CHU L, YANG L, et al. Determination of tire rubber-pavement directional coefficient of friction based on contact mechanism considerations[J]. Tribology International, 2023, 179: 1081781-10817814.
|
[32] |
TAN Q L, XU X Y, LIANG H J. Physiological big data mining through machine learning and wireless sensor networks[J]. International Journal of Distributed Systems and Technologies, 2023, 14(2): 1-15.
|
[33] |
KRIZHEVSKY A, SUSSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[34] |
彭毅, 李强, 战友, 等. 基于区域三维纹理特征的路面抗滑性能评估[J]. 东南大学学报(自然科学版), 2020, 50(4): 667-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004010.htm
PENG Yi, LI Qiang, ZHAN You, et al. Pavement skid resistance evaluation based on 3D areal texture characterization[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 667-676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004010.htm
|
[35] |
战友, 李强, 马啸天, 等. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104010.htm
ZHAN You, LI Qiang, MA Xiaotian, et al. Macro and micro texture based prediction of pavement surface friction[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 684-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104010.htm
|
[36] |
陈涛, 郭卫卫, 孟令智, 等. 基于广义回归神经网络的路面摩擦系数预测模型[J]. 公路, 2014, 59(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406001.htm
CHEN Tao, GUO Weiwei, MENG Lingzhi, et al. Prediction model of road friction coefficient based on GRNN network[J]. Highway, 2014, 59(6): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406001.htm
|
[37] |
SERIGOS P, ANDRE D, PROZZI J. Incorporating Surface microtexture in the prediction of skid resistance of flexible pavements[J]. Transportation Research Record, 2014, 2457: 105-113.
|
[38] |
PATTANAIK M L, CHOUDHARY R, KUMAR B. Prediction of frictional characteristics of bituminous mixes using group method of data handling and multigene symbolic genetic programming[J]. Engineering With Computers, 2020, 36(4): 1875-1888.
|
[39] |
LIU C Q, LI J, GAO J, et al. Three dimensional texture measurement using deep learning and multi-view pavement images[J]. Measurement, 2021, 172: 108828.
|
[40] |
YANG G W, LI J Q, ZHAN Y, et al. Convolutional neural network-based friction model using pavement texture data[J]. Journal of Computing in Civil Engineering, 2018, 32(6): 04018052.
|
[41] |
ZHAN Y, LI J Q, YANG G W, et al. Friction-ResNets: deep residual network architecture for pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2020, 146(3): 04020027.
|
[42] |
张金喜, 郭旺达, 宋波, 等. 基于随机森林的沥青路面性能预测[J]. 北京工业大学学报, 2021, 47(11): 1256-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202111008.htm
ZHANG Jinxi, GUO Wangda, SONG Bo, et al. Performance prediction of asphalt pavement based on random forest[J]. Journal of Beijing University of Technology, 2021, 47(11): 1256-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202111008.htm
|
[43] |
ZHAN Y, LI J Q, LIU C, et al. Effect of aggregate properties on asphalt pavement friction based on random forest analysis[J]. Construction and Building Materials, 2021, 292: 123467.
|
[44] |
YANG G W, YU W Y, LI J Q. Random forest-based pavement surface friction prediction using high-resolution 3D image data[J]. Journal of Testing and Evaluation, 2019, 49(2): 20180937.
|
[45] |
高伟业, 张赛, 张杰, 等. 含湿相变粗糙多孔材质的热质耦合分形研究[J]. 应用数学和力学, 2022, 43(5): 561-568. doi: 10.21656/1000-0887.420328
GAO Weiye, ZHANG Sai, ZHANG Jie, et al. Thermo-mass coupling fractal study of wet phase-change rough porous materials[J]. Applied Mathematics and Mechanics, 2022, 43(5): 561-568. (in Chinese) doi: 10.21656/1000-0887.420328
|
[46] |
张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法[J]. 岩石力学与工程学报, 2005, 24(17): 3192-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517029.htm
ZHANG Yaheng, ZHOU Hongwei, XIE Heping. Improved cubic covering method for fractal[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3192-3196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517029.htm
|
[47] |
郑少鹏, 程志豪, 陈亮亮, 等. 路面表面构造特征指标对抗滑性能的影响[J]. 公路, 2018, 63(6): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201806007.htm
ZHENG Shaopeng, CHENG Zhihao, CHEN Liangliang, et al. Influence of pavement surface structural characteristic index on skid resistance[J]. Highway, 2018, 63(6): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201806007.htm
|
[48] |
产品几何技术规范(GPS) 表面结构区域法: GB/T 33523.2—2017[S]. 2017.
Geometrical product specifications (GPS) surface texture: areal: GB/T 33523.2—2017[S]. 2017. (in Chinese)
|
[49] |
PARK J W, MOON Y S. Robust estimation of target scale by removing outlier motion vectors using MAD[J]. Electronics Letters, 2015, 51(9): 691-693.
|
[50] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 44-51.
|
[51] |
杨彦从, 彭瑞东, 周宏伟. 三维空间数字图像的分形维数计算方法[J]. 中国矿业大学学报, 2009, 38(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200902019.htm
YANG Yancong, PENG Ruidong, ZHOU Hongwei. Computation of fractal dimension for digital image in a 3-D space[J]. Journal of China University of Mining & Technology, 2019, 38(2): 251-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200902019.htm
|