Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
CAO Qi, FENG Min. Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization[J]. Applied Mathematics and Mechanics, 2024, 45(4): 502-508. doi: 10.21656/1000-0887.440245
Citation: CAO Qi, FENG Min. Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization[J]. Applied Mathematics and Mechanics, 2024, 45(4): 502-508. doi: 10.21656/1000-0887.440245

Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization

doi: 10.21656/1000-0887.440245
  • Received Date: 2023-08-17
  • Rev Recd Date: 2023-12-07
  • Publish Date: 2024-04-01
  • The nonsmooth semi-infinite multiobjective optimization problems were investigated. The higher-order weak KKT sufficient optimality conditions for strictly local efficient solutions were established in terms of higher-order lower Studniarski derivatives. Furthermore, under the assumption that all multipliers associated with objective functions are positive in optimality conditions, the higher-order strong KKT sufficient optimality conditions for strictly local Borwein-properly efficient solutions would be achieved. These sufficient optimality conditions were established without any convexity assumptions.
  • loading
  • [1]
    林锉云, 董加礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.

    LIN Cuoyun, DONG Jiali. Method and Theory of Multi-Objective Optimization[M]. Changchun: Jilin Education Press, 1992. (in Chinese)
    [2]
    JAHN J. Vector Optimization: Theory, Applications and Extensions[M]. Springer, 2011.
    [3]
    BORWEIN J M. Proper efficient points for maximizations with respect to cones[J]. SIAM Journal on Control and Optimization, 1977, 15(1): 57-63. doi: 10.1137/0315004
    [4]
    GOBERNA M A, KANZI N. Optimality conditions in convex multiobjective SIP[J]. Mathematical Programming, 2017, 164(1/2): 167-191.
    [5]
    KANZI N, NOBAKHTIAN S. Optimality conditions for nonsmooth semi-infinite multiobjective programming[J]. Optimization Letters, 2014, 8(4): 1517-1528. doi: 10.1007/s11590-013-0683-9
    [6]
    KANZI N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data[J]. Optimization Letters, 2015, 9(6): 1121-1129. doi: 10.1007/s11590-014-0801-3
    [7]
    CARISTI G, KANZI N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming[J]. International Journal of Mathematical Analysis, 2015, 9(39): 1929-1938.
    [8]
    PANDEY Y, MISHRA S K. On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints[J]. Operations Research Letters, 2016, 44(1): 148-151. doi: 10.1016/j.orl.2015.12.007
    [9]
    杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012

    YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. (in Chinese) doi: 10.21656/1000-0887.380012
    [10]
    王海军, 张秀利. 非光滑半无限多目标优化问题的强KKT条件[J]. 数学的实践与认识, 2021, 51(9): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202109017.htm

    WANG Haijun, ZHANG Xiuli. Strong KKT type conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Mathematics in Practice and Theory, 2021, 51(9): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202109017.htm
    [11]
    刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342

    LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. (in Chinese) doi: 10.21656/1000-0887.410342
    [12]
    冯欣怡, 孙祥凯. 不确定信息下分式半无限优化问题的近似最优性刻画[J]. 应用数学和力学, 2022, 43(6): 682-689. doi: 10.21656/1000-0887.420248

    FENG Xinyi, SUN Xiangkai. Characterizations of approximate optimality conditions for fractional semi-infinite optimization problems with uncertainty[J]. Applied Mathematics and Mechanics, 2022, 43(6): 682-689. (in Chinese) doi: 10.21656/1000-0887.420248
    [13]
    TUNG L T. Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints[J]. Annals of Operations Research, 2022, 311(2): 1307-1334. doi: 10.1007/s10479-020-03742-1
    [14]
    VAN LUU D. Higher-order efficiency conditions via higher-order tangent cones[J]. Numerical Functional Analysis and Optimization, 2014, 35(1): 68-84. doi: 10.1080/01630563.2013.809583
    [15]
    VAN SU T, VAN LUU D. Higher-order Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming[J]. Optimization, 2022, 71(6): 1749-1775. doi: 10.1080/02331934.2020.1836633
    [16]
    WARD D E. Characterizations of strict local minima and necessary conditions for weak sharp minima[J]. Journal of Optimization Theory and Applications, 1994, 80(3): 551-571. doi: 10.1007/BF02207780
    [17]
    STUDNIARSKI M. Necessary and sufficient conditions for isolated local minima of nonsmooth functions[J]. SIAM Journal on Control and Optimization, 1986, 24(5): 1044-1049. doi: 10.1137/0324061
    [18]
    VAN SU T, HIEN N D. Studniarski's derivatives and efficiency conditions for constrained vector equilibrium problems with applications[J]. Optimization, 2021, 70(1): 121-148. doi: 10.1080/02331934.2019.1702985
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return