Citation: | CAO Qi, FENG Min. Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization[J]. Applied Mathematics and Mechanics, 2024, 45(4): 502-508. doi: 10.21656/1000-0887.440245 |
[1] |
林锉云, 董加礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.
LIN Cuoyun, DONG Jiali. Method and Theory of Multi-Objective Optimization[M]. Changchun: Jilin Education Press, 1992. (in Chinese)
|
[2] |
JAHN J. Vector Optimization: Theory, Applications and Extensions[M]. Springer, 2011.
|
[3] |
BORWEIN J M. Proper efficient points for maximizations with respect to cones[J]. SIAM Journal on Control and Optimization, 1977, 15(1): 57-63. doi: 10.1137/0315004
|
[4] |
GOBERNA M A, KANZI N. Optimality conditions in convex multiobjective SIP[J]. Mathematical Programming, 2017, 164(1/2): 167-191.
|
[5] |
KANZI N, NOBAKHTIAN S. Optimality conditions for nonsmooth semi-infinite multiobjective programming[J]. Optimization Letters, 2014, 8(4): 1517-1528. doi: 10.1007/s11590-013-0683-9
|
[6] |
KANZI N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data[J]. Optimization Letters, 2015, 9(6): 1121-1129. doi: 10.1007/s11590-014-0801-3
|
[7] |
CARISTI G, KANZI N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming[J]. International Journal of Mathematical Analysis, 2015, 9(39): 1929-1938.
|
[8] |
PANDEY Y, MISHRA S K. On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints[J]. Operations Research Letters, 2016, 44(1): 148-151. doi: 10.1016/j.orl.2015.12.007
|
[9] |
杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. (in Chinese) doi: 10.21656/1000-0887.380012
|
[10] |
王海军, 张秀利. 非光滑半无限多目标优化问题的强KKT条件[J]. 数学的实践与认识, 2021, 51(9): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202109017.htm
WANG Haijun, ZHANG Xiuli. Strong KKT type conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Mathematics in Practice and Theory, 2021, 51(9): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202109017.htm
|
[11] |
刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342
LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. (in Chinese) doi: 10.21656/1000-0887.410342
|
[12] |
冯欣怡, 孙祥凯. 不确定信息下分式半无限优化问题的近似最优性刻画[J]. 应用数学和力学, 2022, 43(6): 682-689. doi: 10.21656/1000-0887.420248
FENG Xinyi, SUN Xiangkai. Characterizations of approximate optimality conditions for fractional semi-infinite optimization problems with uncertainty[J]. Applied Mathematics and Mechanics, 2022, 43(6): 682-689. (in Chinese) doi: 10.21656/1000-0887.420248
|
[13] |
TUNG L T. Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints[J]. Annals of Operations Research, 2022, 311(2): 1307-1334. doi: 10.1007/s10479-020-03742-1
|
[14] |
VAN LUU D. Higher-order efficiency conditions via higher-order tangent cones[J]. Numerical Functional Analysis and Optimization, 2014, 35(1): 68-84. doi: 10.1080/01630563.2013.809583
|
[15] |
VAN SU T, VAN LUU D. Higher-order Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming[J]. Optimization, 2022, 71(6): 1749-1775. doi: 10.1080/02331934.2020.1836633
|
[16] |
WARD D E. Characterizations of strict local minima and necessary conditions for weak sharp minima[J]. Journal of Optimization Theory and Applications, 1994, 80(3): 551-571. doi: 10.1007/BF02207780
|
[17] |
STUDNIARSKI M. Necessary and sufficient conditions for isolated local minima of nonsmooth functions[J]. SIAM Journal on Control and Optimization, 1986, 24(5): 1044-1049. doi: 10.1137/0324061
|
[18] |
VAN SU T, HIEN N D. Studniarski's derivatives and efficiency conditions for constrained vector equilibrium problems with applications[J]. Optimization, 2021, 70(1): 121-148. doi: 10.1080/02331934.2019.1702985
|