Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHAO Keke, ZHU Yundie, ZHANG Jiding, JIANG Xiaoyu. Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen[J]. Applied Mathematics and Mechanics, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257
Citation: ZHAO Keke, ZHU Yundie, ZHANG Jiding, JIANG Xiaoyu. Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen[J]. Applied Mathematics and Mechanics, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257

Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen

doi: 10.21656/1000-0887.440257
  • Received Date: 2023-08-22
  • Rev Recd Date: 2024-02-01
  • Publish Date: 2024-07-01
  • Under the far-field uniform tensile load, the crack tip will generate stress concentration, and the grain boundary adjacent to the crack tip will bear large shear stresses to cause nanograin boundary slip. The effects of hydrogen and nanoboundary slip on the crack nucleation, the critical stress intensity factor and the shielding action were investigated. The theoretical solution of the model was given with the continuous distributed dislocation method. The results show that, the wedge cracks preferentially germinate along direction DC of the grain boundary triple junction and grain boundary BD due to the plugging of the dislocation at the grain boundary triple junction and the tip of the slip plane. Moreover, hydrogen decreases the total energy of crack initiation. When hydrogen concentration increases by 1%, the total energy of the most stable crack initiation will decrease by about 1.86%. Although the grain boundary slip increases the critical stress intensity factor and the shielding action at the crack tip, hydrogen will decrease the critical stress intensity factor. Finally, according to the hydrogen enhanced decohesion (HEDE) theory, the influence of hydrogen on surface energy was studied. With every 1% increase of the hydrogen concentration, the surface energy will decrease by 5%. This theoretical work provides new information on the microscopic fracture mechanics of materials caused by hydrogen and grain boundary slip, and helps to explain the microscopic mechanism of metal fracture.
  • loading
  • [1]
    WANG L, ZHOU J, ZHANG S, et al. Effects of accommodated grain boundary sliding on triple junction nanovoid nucleation in nanocrystalline materials[J]. Mechanics of Materials, 2014, 71 (4): 10-20.
    [2]
    FENG H, FANG Q H, ZHANG L C, et al. Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials[J]. International Journal of Plasticity, 2013, 42 (4): 50-64.
    [3]
    MEIROM R A, CLARK T E, MUHLSTEIN C L. The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films[J]. Acta Materialia, 2012, 60 (3): 1408-1417. doi: 10.1016/j.actamat.2011.11.015
    [4]
    OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids[J]. Acta Materialia, 2011, 59 (12): 5023-5031. doi: 10.1016/j.actamat.2011.04.056
    [5]
    JIANG D E, CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52 (16): 4801-4807. doi: 10.1016/j.actamat.2004.06.037
    [6]
    BARNOUSH A, ASGARI M, JOHNSEN R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation[J]. Scripta Materialia, 2012, 66 (6): 414-417. doi: 10.1016/j.scriptamat.2011.12.004
    [7]
    OVID'KO I A. Review on the fracture processes in nanocrystalline materials[J]. Journal of Materials Science, 2007, 42 (5): 1694-1708. doi: 10.1007/s10853-006-0968-9
    [8]
    HILLS D A, KELLY P A, DAI D N, et al. Solution of Crack Problems: the Distributed Dislocation Technique[M]. Netherlands: Kluwer Academic Publishers, 2013.
    [9]
    孙奇, 吴金波, 江晓禹. 次表面分岔裂纹的力学行为[J]. 应用数学和力学, 2023, 44 (12): 1453-1462. doi: 10.21656/1000-0887.440056

    SUN Qi, WU Jinbo, JIANG Xiaoyu. Mechanical behavior of subsurface branched cracks[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1453-1462. (in Chinese) doi: 10.21656/1000-0887.440056
    [10]
    邢帅兵, 王强胜, 生月, 等. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40 (2): 189-199. doi: 10.21656/1000-0887.390136

    XING Shuaibing, WANG Qiangsheng, SHENG Yue, et al. Effects of circular inhomogeneity on crack propagation[J]. Applied Mathematics and Mechanics, 2019, 40 (2): 189-199. (in Chinese) doi: 10.21656/1000-0887.390136
    [11]
    LI X, JIANG X, LI X, et al. Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation[J]. International Journal of Mechanical Sciences, 2016, 119 : 217-223. doi: 10.1016/j.ijmecsci.2016.10.019
    [12]
    ZHANG J, SHENG Y, YANG H, et al. Crystal crack dislocation model and microcrack nucleation criterion in the hydrogen environment[J]. European Journal of Mechanics A: Solids, 2023, 98 : 104899. doi: 10.1016/j.euromechsol.2022.104899
    [13]
    ZHOU G H, ZHOU F X, WAN F R, et al. Molecular dynamics simulation of hydrogen enhancing dislocation emission[J]. Science in China Series E: Technological Sciences, 1998, 145/149 : 123-128.
    [14]
    CHEREPANOV G P. Mechanics of brittle fracture[J]. Journal of Applied Mechanics, 1982, 49 (4): 932.
    [15]
    WANG F, WANG C. First-principles investigation of hydrogen embrittlement in polycrystalline Ni3Al[J]. Physical Review B, 1998, 57 (1): 289-295. doi: 10.1103/PhysRevB.57.289
    [16]
    OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals[J]. Acta Materialia, 2008, 56 (12): 2718-2727. doi: 10.1016/j.actamat.2008.02.004
    [17]
    LI X J X. Revealing the inhibition mechanism of grain size gradient on crack growth in gradient nano-grained materials[J]. International Journal of Solids and Structures, 2019, 172/173 : 1-9. doi: 10.1016/j.ijsolstr.2019.05.023
    [18]
    SABNIS P A, MAZIERE M, FOREST S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals[J]. International Journal of Plasticity, 2012, 28 (1): 102-123.
    [19]
    LI X, SHEINERMAN A G, YANG H, et al. Theoretical modeling of toughening mechanisms in the CrMnFeCoNi high-entropy alloy at room temperature[J]. International Journal of Plasticity, 2022, 154 : 103304.
    [20]
    ZHANG F, LIU Y, ZHOU J. The crack nucleation in hierarchically nanotwinned metals[J]. Engineering Fracture Mechanics, 2018, 201 : 29-35.
    [21]
    WU M S, ZHOU H. An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations[J]. International Journal of Fracture, 1996, 78 (2): 165-191.
    [22]
    GIBSON M A, SCHUH C A. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys[J]. Acta Materialia, 2015, 95 : 145-155.
    [23]
    NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International journal of fracture, 1975, 11 (2): 245-250.
    [24]
    SHIMOKAWA T, TANAKA M, KINOSHITA K, et al. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals[J]. Physical Review B, 2011, 83 (21): 214113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (974) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return