Citation: | CHEN Wei, TANG Zhihong, PENG Linxin. Linear Bending Analysis of Functionally Graded Sandwich Shells With the Meshless Method Based on the Layer-Wise Theory[J]. Applied Mathematics and Mechanics, 2024, 45(5): 539-553. doi: 10.21656/1000-0887.440262 |
[1] |
KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34: 3-10.
|
[2] |
沈惠申. 功能梯度复合材料板壳结构的弯曲、屈曲和振动[J]. 力学进展, 2004, 34(1): 53-60. doi: 10.3321/j.issn:1000-0992.2004.01.006
SHEN Huishen. Bending, buckling and vibration of functionally graded plates and shells[J]. Advances in Mechanics, 2004, 34(1): 53-60. (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.01.006
|
[3] |
LIEW K M, ZHAO X, FERREIRA A J M. A review of meshless methods for laminated and functionally graded plates and shells[J]. Composite Structures, 2011, 93(8): 2031-2041. doi: 10.1016/j.compstruct.2011.02.018
|
[4] |
李尧臣, 亓峰, 仲政. 功能梯度矩形板的近似理论与解析解[J]. 力学学报, 2010, 42(4): 670-681. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201004013.htm
LI Yaochen, QI Feng, ZHONG Zheng. Approximation theory and analytical solution for functionally graded piezoelectric rectangular plates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 670-681. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201004013.htm
|
[5] |
WOODWARD B, KASHTALYAN M. Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates[J]. European Journal of Mechanics A: Solids, 2011, 30(5): 705-718. doi: 10.1016/j.euromechsol.2011.04.003
|
[6] |
沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224
SHEN Lulu, CAI Fangyuan, YANG Bo. Elastic solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
|
[7] |
张靖华, 李世荣, 马连生. 功能梯度截顶圆锥壳的热弹性弯曲精确解[J]. 力学学报, 2008, 40(2): 185-193. doi: 10.3321/j.issn:0459-1879.2008.02.006
ZHANG Jinghua, LI Shirong, MA Liansheng. Exact solution of thermoelastic bending for functionally graded truncated conical shells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 185-193. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.02.006
|
[8] |
PAYETTE G S, REDDY J N. A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 664-704. doi: 10.1016/j.cma.2014.06.021
|
[9] |
PARAND A A, ALIBEIGLOO A. Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM[J]. Composites(Part B): Engineering, 2017, 126: 1-16. doi: 10.1016/j.compositesb.2017.05.071
|
[10] |
刘涛, 李朝东, 汪超, 等. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(1): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101012.htm
LIU Tao, LI Chaodong, WANG Chao, et al. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory[J]. Journal of Vibration and Shock, 2021, 40(1): 73-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101012.htm
|
[11] |
黄干云, 汪越胜, 余寿文. 功能梯度材料的平面断裂力学分析[J]. 力学学报, 2005, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200501001.htm
HUANG Ganyun, WANG Yuesheng, YU Shouwen. A new multi-layered model for in-plane fracture analysis of functionally graded materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200501001.htm
|
[12] |
WANG Y S, HUANG G Y, GROSS D. On the mechanical modeling of functionally graded interfacial zone with a Griffith crack: anti-plane deformation[J]. International Journal of Fracture, 2003, 125(3): 189-205.
|
[13] |
黄立新, 姚祺, 张晓磊, 等. 基于分层法的功能梯度材料有限元分析[J]. 玻璃钢/复合材料, 2013(2): 43-48. doi: 10.3969/j.issn.1003-0999.2013.02.009
HUANG Lixin, YAO Qi, ZHANG Xiaolei, et al. Finite element analysis of functionally graded materials based on layering method[J]. Composite Science and Engineering, 2013(2): 43-48. (in Chinese) doi: 10.3969/j.issn.1003-0999.2013.02.009
|
[14] |
NIKBAKHT S, SALAMI S J, SHAKERI M. Three dimensional analysis of functionally graded plates up to yielding, using full layer-wise finite element method[J]. Composite Structures, 2017, 182: 99-115. doi: 10.1016/j.compstruct.2017.09.022
|
[15] |
BRISCHETTO S. A 3D layer-wise model for the correct imposition of transverse shear/normal load conditions in FGM shells[J]. International Journal of Mechanical Sciences, 2018, 136: 50-66. doi: 10.1016/j.ijmecsci.2017.12.013
|
[16] |
龙述尧, 刘凯远, 李光耀. 功能梯度材料中的无网格局部径向点插值法[J]. 湖南大学学报(自然科学版), 2007, 34(3): 41-44. doi: 10.3321/j.issn:1000-2472.2007.03.010
LONG Shuyao, LIU Kaiyuan, LI Guangyao. A meshless local radial point interpolation method for the analysis of functionally graded materials[J]. Journal of Hunan University (Natural Sciences), 2007, 34(3): 41-44. (in Chinese) doi: 10.3321/j.issn:1000-2472.2007.03.010
|
[17] |
邵玉龙, 段庆林, 李锡夔, 等. 功能梯度材料的二阶一致无网格法[J]. 工程力学, 2017, 34(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703002.htm
SHAO Yulong, DUAN Qinlin, LI Xikui, et al. Quadratically consistent meshfree method for functionally graded materials[J]. Engineering Mechanics, 2017, 34(3): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703002.htm
|
[18] |
QIAN L F, BATRA R C, CHEN L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method[J]. Composites(Part B): Engineering, 2004, 35: 685-697. doi: 10.1016/j.compositesb.2004.02.004
|
[19] |
LEE Y Y, ZHAO X, LIEW K M. Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method[J]. Smart Materials and Structures, 2009, 18(3): 035007. doi: 10.1088/0964-1726/18/3/035007
|
[20] |
THAI C H, DO V N V, NGUYEN-XUAN H. An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates[J]. Engineering Analysis With Boundary Elements, 2016, 64: 122-136. doi: 10.1016/j.enganabound.2015.12.003
|
[21] |
HOSSEINI S, RAHIMI G, ANANI Y. A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT[J]. Engineering Analysis With Boundary Elements, 2021, 125: 168-177. doi: 10.1016/j.enganabound.2020.12.016
|
[22] |
VU T V, KHOSRAVIFARD A, HEMATIYAN M R, et al. Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory[J]. European Journal of Mechanics A: Solids, 2019, 74: 160-175. doi: 10.1016/j.euromechsol.2018.11.005
|
[23] |
SLADEK J, SLADEK V, ZHANG C, et al. Static and dynamic analysis of shallow shells with functionally graded and orthotropic material properties[J]. Mechanics of Advanced Materials and Structures, 2008, 15(2): 142-156. doi: 10.1080/15376490701810480
|
[24] |
ZHAO X, LEE Y Y, LIEW K M. Thermoelastic and vibration analysis of functionally graded cylindrical shells[J]. International Journal of Mechanical Sciences, 2009, 51(9/10): 694-707.
|
[25] |
ZHAO X, LIEW K M. A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels[J]. Computational Mechanics, 2010, 45: 297-310. doi: 10.1007/s00466-009-0446-8
|
[26] |
ZHAO X, LIEW K M. Free vibration analysis of functionally graded conical shell panels by a meshless method[J]. Composite Structures, 2011, 93(2): 649-664. doi: 10.1016/j.compstruct.2010.08.014
|
[27] |
MELLOULI H, JRAD H, WALI M, et al. Meshfree implementation of the double director shell model for FGM shell structures analysis[J]. Engineering Analysis With Boundary Elements, 2019, 99: 111-121. doi: 10.1016/j.enganabound.2018.10.013
|
[28] |
SIMO J C, FOX D D, RIFAI M S. Formulation and computational aspects of a stress resultant geometrically exact shell model[J]. Computation Mechanics, 1990, 55: 751-759.
|
[29] |
WANG L, LIU Y, ZHOU Y, et al. Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity[J]. International Journal of Mechanical Sciences, 2021, 193: 106165. doi: 10.1016/j.ijmecsci.2020.106165
|
[30] |
AHMAD S, IRONS B M, ZIENKIEWICZ O C. Analysis of thick and thin shell structures by curved finite elements[J]. International Journal for Numerical Methods in Engineering, 1970, 2: 419-451. doi: 10.1002/nme.1620020310
|
[31] |
SALKAUSKAS P L. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981, 37(155): 141-158. doi: 10.1090/S0025-5718-1981-0616367-1
|
[32] |
CHEN J S, PAN C, WU C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(4): 195-227.
|
[33] |
TIMOSHENKO S. Theory of Plates and Shells[M]. New York: McGraw-Hill Book Company, 1959.
|
[34] |
NEVES A M A, FERREIRA A J M, CARRERA E, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique[J]. Composites(Part B): Engineering, 2013, 44(1): 657-674. doi: 10.1016/j.compositesb.2012.01.089
|
[35] |
NGUYEN V H, NGUYEN T K, THAI H T, et al. A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates[J]. Composites(Part B): Engineering, 2014, 66: 233-246. doi: 10.1016/j.compositesb.2014.05.012
|
[36] |
ZENKOUR A M. A comprehensive analysis of functionally graded sandwich plates, part 1: deflection and stresses[J]. International Journal of Solids and Structures, 2005, 42(18): 5224-5242.
|
[37] |
SAYYAD A S, GHUGAL Y M. Static and free vibration analysis of doubly-curved functionally graded material shells[J]. Composite Structures, 2021, 269: 114045. doi: 10.1016/j.compstruct.2021.114045
|
[38] |
HUAN D T, TU T M, QUOC T H. Analytical solutions for bending, buckling and vibration analysis of functionally graded cylindrical panel[J]. Vietnam Journal of Science Technology, 2017, 55(5): 587-597. doi: 10.15625/2525-2518/55/5/8843
|
[39] |
CARRERA E, BRISCHETTO S, CINEFRA M, et al. Effects of thickness stretching in functionally graded plates and shells[J]. Composites(Part B): Engineering, 2011, 42(2): 123-133. doi: 10.1016/j.compositesb.2010.10.005
|