Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WANG Changsheng, YU Chuanze, ZHANG Xiangkui. Shell Structure Analysis Based on the Convected Particle Domain Interpolation[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286
Citation: WANG Changsheng, YU Chuanze, ZHANG Xiangkui. Shell Structure Analysis Based on the Convected Particle Domain Interpolation[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286

Shell Structure Analysis Based on the Convected Particle Domain Interpolation

doi: 10.21656/1000-0887.440286
  • Received Date: 2023-09-20
  • Rev Recd Date: 2024-01-15
  • Publish Date: 2024-09-01
  • The material point method (MPM) adopts the dual description of Lagrangian particles and Euler grids, so it can deal with large deformation and contact problems conveniently. The large deformation problem of thin shell structures was analyzed based on the framework of the convected particle domain interpolation material point method (CPDIMPM). The quadrilateral mesh was used to discretize the shell structure. The basis function was calculated by the double mapping from the material point to the shell element node and then to the background grid node. The momentum equation was solved on the background grid, and the internal force of the material point was updated based on the Belytschko-Tsay (BT) shell element theory. In the numerical example, the comparison of large deformations of the shell structure with reference solutions verifies the accuracy of the proposed method.
  • loading
  • [1]
    SULSKY Z, CHEN H, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
    [2]
    周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349

    ZHOU Xiaomin, SUN Zheng. Simulation of non-Newtonian fluid flows with the material point method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. (in Chinese) doi: 10.21656/1000-0887.390349
    [3]
    STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127.
    [4]
    徐云卿, 周晓敏, 赵世一, 等. 基于B样条物质点法的溃坝流模拟研究[J]. 应用数学和力学, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363

    XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, et al. Simulation study on dam break flow based on the B-spline material point method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. (in Chinese) doi: 10.21656/1000-0887.430363
    [5]
    ZHANG D Z, MA X, GIGUERE P T. Material point method enhanced by modified gradient of shape function[J]. Journal of Computational Physics, 2011, 230(16): 6379-6398. doi: 10.1016/j.jcp.2011.04.032
    [6]
    MOUTSANIDIS G, LONG C C, BAZILEVS Y. IGA-MPM: the isogeometric material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113346. doi: 10.1016/j.cma.2020.113346
    [7]
    BARDENHAGEN S G, KOBER E M. The generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-496.
    [8]
    SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456.
    [9]
    SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952.
    [10]
    WAN D, WANG M, ZHU Z, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture[J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097-1114.
    [11]
    WANG C S, DONG G W, ZHANG Z G, et al. Generalized particle domain method: an extension of material point method generates particles from the CAD files[J]. International Journal for Numerical Methods in Engineering, 2024, 125(17): e7537.
    [12]
    NGUYEN V P, DE VAUCORBEIL A, BORDAS S. The Material Point Method: Theory, Implementations and Applications[M]. Berlin: Springer Cham, 2023.
    [13]
    KANG J, HOMEL M A, HERBOLD E B. Beam elements with frictional contact in the material point method[J]. International Journal for Numerical Methods in Engineering, 2022, 123(4): 1013-1035.
    [14]
    WU S R, GU L. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics[M]. Wiley, 2012.
    [15]
    JIANG C, GAST T, TERAN J. Anisotropic elastoplasticity for cloth, knit and hair frictional contact[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
    [16]
    GUO Q, HAN X, FU C, et al. A material point method for thin shells with frictional contact[J]. ACM Transactions on Graphics, 2018, 37(4): 1-15. http://www.onacademic.com/detail/journal_1000040466349010_4901.html
    [17]
    WU B, CHEN Z, ZHANG X, et al. Coupled shell-material point method for bird strike simulation[J]. Acta Mechanica Solida Sinica, 2018, 31(1): 1-18.
    [18]
    DE VAUCORBEIL A, NGUYEN V P. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113503.
    [19]
    NI R, LI J, ZHANG X, et al. An immersed boundary-material point method for shock-structure interaction and dynamic fracture[J]. Computer Physics Communications, 2022, 470: 111558.
    [20]
    LI J, NI R, ZENG Z, et al. An efficient solid shell material point method for large deformation of thin structures[J]. International Journal for Numerical Methods in Engineering, 2024, 125(1): e7359.
    [21]
    FLANAGAN D P, BELYTSCHK T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
    [22]
    BELYSCHKO T, TSAY C S. A stabilization procedure for the quadrilateral plate element with one-point quadrature[J]. International Journal for Numerical Methods in Engineering, 1983, 19(3): 405-419.
    [23]
    BELYTSCHKO T, LIN J I, TSAY C S. Explicit algorithms for the nonlinear dynamics of shell[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251.
    [24]
    钟志华, 李光耀. 薄板冲压成型过程的计算机仿真与应用[M]. 北京: 北京理工大学出版社, 1998.

    ZHONG Zhihua, LI Guangyao. Simulation and Application of Sheet Metal Stamping Process[M]. Beijing: Beijing Institute of Technology Press, 1998. (in Chinese)
    [25]
    SZE K Y, LIU X H, LO S H. Popular benchmark problems for geometric nonlinear analysis of shells[J]. Finite Elements in Analysis & Design, 2004, 40(11): 1551-1569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (107) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return