Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LIU Wei, TONG Xiaolong, JIN Rong. An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations[J]. Applied Mathematics and Mechanics, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292
Citation: LIU Wei, TONG Xiaolong, JIN Rong. An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations[J]. Applied Mathematics and Mechanics, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292

An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations

doi: 10.21656/1000-0887.440292
  • Received Date: 2023-09-23
  • Rev Recd Date: 2023-12-13
  • Publish Date: 2024-07-01
  • Numerical dissipation is an important characteristic of numerical integration methods, which directly affects the accuracy of numerical simulation results. Numerical dissipation can improve numerical simulation results for dynamic systems with spurious high-frequency vibrations, but it can also cause distorted calculation results for dynamic systems with real high-frequency vibrations. A 2-sub-step implicit numerical integration method was proposed with controllable numerical damping dissipation to solve structural dynamic systems. Through theoretical derivations, the numerical properties of the new integration method, including the spectral radii, stability, amplitude decay, and period elongation, were introduced in detail. The new implicit integration method can utilize algorithm parameter α to control the numerical dissipation of spurious high-frequency vibration, with a corresponding dissipation ratio of 1-|α|, where -1≤α≤1. The advantages of the new method in terms of the computational accuracy, the high-frequency numerical dissipation, and the nonlinear solving ability were demonstrated through 3 typical examples of a 1-DOF dynamic system, a high-frequency spurious vibration system, and a multi-DOF nonlinear spring-mass system.
  • loading
  • [1]
    DOKAINISH M A, SUBBARAJ K. A survey of direct time-integration methods in computational structural dynamics Ⅰ: explicit methods[J]. Computers & Structures, 1989, 32: 1371-1386.
    [2]
    SUBBARAJ K, DOKAINISH M A. A survey of direct time-integration methods in computational structural dynamics Ⅱ: implicit methods[J]. Computers & Structures, 1989, 32: 1387-1401.
    [3]
    KRIEG R D. Unconditional stability in numerical time integration methods[J]. Journal of Applied Mechanics, 1973, 40: 417-421. doi: 10.1115/1.3422999
    [4]
    CHUNG J, LEE J M. A new family of explicit time integration methods for linear and non-linear structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1994, 37 (23): 3961-3976. doi: 10.1002/nme.1620372303
    [5]
    KIM W. A simple explicit single step time integration algorithm for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2019, 119 (5): 383-403. doi: 10.1002/nme.6054
    [6]
    NOH G, BATHE K J. An explicit time integration scheme for the analysis of wave propagations[J]. Computers & Structures, 2013, 129: 178-193.
    [7]
    LI J, YU K, ZHAO R. Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114945. doi: 10.1016/j.cma.2022.114945
    [8]
    HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of the Aeronautical Sciences, 1950, 17: 540-550. doi: 10.2514/8.1722
    [9]
    WILSON E L. A Computer Program for the Dynamic Stress Analysis of Underground Structures[M]. Berkeley: University of California, 1968.
    [10]
    NEWMARK N. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, 1959, 85 (3): 67-94. doi: 10.1061/JMCEA3.0000098
    [11]
    HILBER H M, HUGHES T J R, TAYLOR R L. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering & Structural Dynamics, 1977, 5 (3): 283-292.
    [12]
    WOOD W L, BOSSAK M, ZIENKIEWICZ O C. An alpha modification of Newmark's method[J]. International Journal for Numerical Methods in Engineering, 1980, 15 (10): 1562-1566. doi: 10.1002/nme.1620151011
    [13]
    邵慧萍, 蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报, 1988, 5 (4): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm

    SHAO Huiping, CAI Chengwen. A three parameters algorithm fornumerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5 (4): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm
    [14]
    于开平, 邹经湘. 结构动力响应数值算法耗散和超调特性设计[J]. 力学学报, 2005, 37 (4): 467-476. doi: 10.3321/j.issn:0459-1879.2005.04.012

    YU Kaiping, ZOU Jingxiang. Two time integration algorithms with numerical dissipation and without overshoot for structural dynamic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37 (4): 467-476. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.04.012
    [15]
    BATHE K J, BAIG M M. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83 (32): 2513-2524.
    [16]
    WEN W, WEI K, LEI H, et al. A novel sub-step composite implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2017, 182: 176-186.
    [17]
    邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44 (5): 904-911. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm

    XING Yufeng, GUO Jing. A self-adaptive Newmark method with parameters dependent upon structural dynamic characteristics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (5): 904-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm
    [18]
    陈元昌, 张邦基, 张农, 等. 结构动力响应分析的三阶显隐式时程积分方法[J]. 应用力学学报, 2016, 33 (2): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201602004.htm

    CHEN Yuanchang, ZHANG Bangji, ZHANG Nong, et al. A three-order explicit-implicit time-integration scheme for dynamic response analysis[J]. Chinese Journal of Applied Mechanics, 2016, 33 (2): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201602004.htm
    [19]
    苏成, 罗俊哲, 许秩. 多孔结构多尺度随机振动分析的渐近均匀化-时域显式法[J]. 应用数学和力学, 2023, 44 (1): 1-11. doi: 10.21656/1000-0887.430116

    SU Cheng, LUO Junzhe, XU Zhi. An asymptotic-homogenization explicit time-domain method for random multiscale vibration analysis of porous material structures[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 1-11. (in Chinese) doi: 10.21656/1000-0887.430116
    [20]
    刘凡, 李利祥, 赵岩. 移动荷载作用下具有不确定参数桥梁动力响应分析[J]. 应用数学和力学, 2023, 44 (3): 241-247. doi: 10.21656/1000-0887.430148

    LIU Fan, LI Lixiang, ZHAO Yan. Dynamic responses analysis of bridges with uncertain parameters under moving loads[J]. Applied Mathematics and Mechanics, 2023, 44 (3): 241-247. (in Chinese) doi: 10.21656/1000-0887.430148
    [21]
    BATHE K J, NOH G. Insight into an implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2012, 98: 1-6.
    [22]
    LI J, YU K. Development of composite sub-step explicit dissipative algorithms with truly self-starting property[J]. Nonlinear Dynamics, 2021, 103 (2): 1911-1936.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (195) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return