Citation: | QIU Shasha, LIU Xingze, NING Wenjie, YAO Weian, DUAN Qinglin. A Three-Dimensional Adaptive Finite Element Method for Phase-Field Models of Fracture[J]. Applied Mathematics and Mechanics, 2024, 45(4): 391-399. doi: 10.21656/1000-0887.440299 |
[1] |
唐红梅, 周福川, 陈松, 等. 高烈度下双裂缝主控结构面危岩的断裂破坏机制分析[J]. 应用数学和力学, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187
TANG Hongmei, ZHOU Fuchuan, CHEN Song, et al. Analysis of the fracture failure mechanism of dangerous rocks with double crack main control structural planes under high intensity[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. (in Chinese) doi: 10.21656/1000-0887.410187
|
[2] |
肖刘. 某型飞机机翼断裂分析[J]. 装备制造技术, 2013, 5: 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htm
XIAO Liu. Analysis of wing fracture of a certain type of aircraft[J]. Equipment Manufacturing Technology, 2013, 5: 132-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htm
|
[3] |
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198.
|
[4] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342.
|
[5] |
BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(4): 797-826.
|
[6] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/48): 2765-2778.
|
[7] |
AMBATI M, GERASIMOV T, LORENZIS L D. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405. doi: 10.1007/s00466-014-1109-y
|
[8] |
WU J Y, HUANG Y, ZHOU H, et al. Three-dimensional phase-field modeling of mode Ⅰ+Ⅱ/Ⅲ failure in solids[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113537. doi: 10.1016/j.cma.2020.113537
|
[9] |
MOLNAR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. doi: 10.1016/j.finel.2017.03.002
|
[10] |
BURKE S, ORTNER C, SULI E. An adaptive finite element approximation of a variational model of brittle fracture[J]. SIAM Journal on Numerical Analysis, 2010, 48(3): 980-1012. doi: 10.1137/080741033
|
[11] |
ARTINA M, FORNASIER M, MICHELETTI S, et al. Anisotropic mesh adaptation for crack detection in brittle materials[J]. SIAM Journal on Scientific Computing, 2015, 37(4): B633-B659. doi: 10.1137/140970495
|
[12] |
HIRSHIKESH, JANSARI C, KANNAN K, et al. Adaptive phase field method for quasi-static brittle fracture based on recovery based error indicator and quadtree decomposition[J]. Engineering Fracture Mechanics, 2019, 220: 106599. doi: 10.1016/j.engfracmech.2019.106599
|
[13] |
HEISTER T, WHEELER M F, WICK T. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 466-495. doi: 10.1016/j.cma.2015.03.009
|
[14] |
LEE S, WHEELER M F, WICK T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 111-132. doi: 10.1016/j.cma.2016.02.037
|
[15] |
MOËS N, STOLZ C, BERNARD P E, et al. A level set based model for damage growth: the thick level set approach[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358-380. doi: 10.1002/nme.3069
|