Volume 45 Issue 5
May  2024
Turn off MathJax
Article Contents
YANG Xiaomeng, LI Liang, HU Xiongfei, ZHOU Huanlin. Structure Optimization of Holding Poles Based on the Improved Sine Cosine Algorithm[J]. Applied Mathematics and Mechanics, 2024, 45(5): 529-538. doi: 10.21656/1000-0887.440354
Citation: YANG Xiaomeng, LI Liang, HU Xiongfei, ZHOU Huanlin. Structure Optimization of Holding Poles Based on the Improved Sine Cosine Algorithm[J]. Applied Mathematics and Mechanics, 2024, 45(5): 529-538. doi: 10.21656/1000-0887.440354

Structure Optimization of Holding Poles Based on the Improved Sine Cosine Algorithm

doi: 10.21656/1000-0887.440354
  • Received Date: 2023-12-14
  • Rev Recd Date: 2024-01-23
  • Publish Date: 2024-05-01
  • The holding pole is a special lifting device for the construction of transmission towers. The optimization design model for the holding pole was established. The minimum mass was set as the optimization objective. The cross-section sizes of members, the connection modes of auxiliary members and the coordinates of the rocker joint were set as the optimization variables. The allowable stress, displacement and buckling coefficient were taken as the constraining conditions. An improved sine cosine algorithm (ISCA) was proposed to carry out the size, shape and topology optimization designs of the holding pole. For the ISCA, the Lévy flight was introduced to enhance the global search ability, elite guidance strategy was applied to enhance the local search ability, and the greedy selection strategy was used to update the optimal solution. The example shows that, the ISCA can effectively solve the optimization design problems of spatial truss structures.
  • (Contributed by ZHOU Huanlin, M. AMM Editorial Board)
  • loading
  • [1]
    陶然, 周焕林, 孟增, 等. 基于响应面法和改进算术优化算法的抱杆优化设计[J]. 应用数学和力学, 2022, 43(10): 1113-1122. doi: 10.21656/1000-0887.420318

    TAO Ran, ZHOU Huanlin, MENG Zeng, et al. Optimization design of holding pole based on response surface methodology and improved arithmetic optimization algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1113-1122. (in Chinese) doi: 10.21656/1000-0887.420318
    [2]
    方林, 蒋晓琳, 周庆丰, 等. 基于改进天鹰优化器的抱杆结构优化[J]. 科学技术与工程, 2023, 23(27): 11759-11767. doi: 10.12404/j.issn.1671-1815.2023.23.27.11759

    FANG Lin, JIANG Xiaolin, ZHOU Qingfeng, et al. Structure optimization of holding pole based on improved aquila optimizer[J]. Science Technology and Engineering, 2023, 23(27): 11759-11767. (in Chinese) doi: 10.12404/j.issn.1671-1815.2023.23.27.11759
    [3]
    刘宸宇, 骆烜赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023, 44(8): 953-964. doi: 10.21656/1000-0887.430342

    LIU Chenyu, LUO Xuanhe, LIU Kangxiang, et al. Light weight design of arc rib stiffened plate based on the smeared stiffener method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 953-964. (in Chinese) doi: 10.21656/1000-0887.430342
    [4]
    杜晨, 彭雄奇. 变厚度连续纤维增强复合材料铺层设计优化方法[J]. 应用数学和力学, 2022, 43(12): 1313-1323. doi: 10.21656/1000-0887.420410

    DU Chen, PENG Xiongqi. Lamination design optimization for continuous fiber reinforced composites of variable thicknesses[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1313-1323. (in Chinese) doi: 10.21656/1000-0887.420410
    [5]
    郭惠勇, 宋小辉, 李正良. 基于改进人工鱼群算法的输电塔塔腿拓扑优化[J]. 振动与冲击, 2017, 36(4): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201704009.htm

    GUO Huiyong, SONG Xiaohui, LI Zhengliang. Topology optimization of transmission tower legs based on an improved artificial fish-swarm algorithm[J]. Journal of Vibration and Shock, 2017, 36(4): 52-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201704009.htm
    [6]
    石开荣, 潘文智, 姜正荣, 等. 基于生长空间限定与并行搜索的模拟植物生长算法的空间结构优化方法[J]. 建筑结构学报, 2021, 42(7): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202107010.htm

    SHI Kairong, PAN Wenzhi, JIANG Zhengrong, et al. Optimization method of spatial structures based on growth space limited & parallel search-based plant growth simulation algorithm[J]. Journal of Building Structures, 2021, 42(7): 85-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202107010.htm
    [7]
    SOUZA R R D, MIGUEL L F F, LOPEZ R H, et al. A procedure for the size, shape and topology optimization of transmission line tower structures[J]. Engineering Structures, 2016, 111: 162-184. doi: 10.1016/j.engstruct.2015.12.005
    [8]
    KHODZHAIEV M, REUTER U. Structural optimization of transmission towers using a novel genetic algorithm approach with a variable length genome[J]. Engineering Structures, 2021, 240: 112306. doi: 10.1016/j.engstruct.2021.112306
    [9]
    FIORE A, MARANO G C, GRECO R, et al. Structural optimization of hollow-section steel trusses by differential evolution algorithm[J]. International Journal of Steel Structures, 2016, 16(2): 411-423. doi: 10.1007/s13296-016-6013-1
    [10]
    RENKAVIESKI C, PARPINELLI R S. Meta-heuristic algorithms to truss optimization: literature mapping and application[J]. Expert Systems With Applications, 2021, 182: 115197. doi: 10.1016/j.eswa.2021.115197
    [11]
    MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. doi: 10.1016/j.knosys.2015.12.022
    [12]
    ATTIA A F, EL SEHIEMY R A, HASANIEN H M. Optimal power flow solution in power systems using a novelsine-cosine algorithm[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 331-343.
    [13]
    EWEES A A, ELAZIZ M A, AL-QANESS M A A, et al. Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation[J]. IEEE Access, 2020, 8: 26304-26315. doi: 10.1109/ACCESS.2020.2971249
    [14]
    ABUALIGAH L, DULAIMI A J. A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm[J]. Cluster Computing, 2021, 24(3): 2161-2176. doi: 10.1007/s10586-021-03254-y
    [15]
    ABDEL-MAWGOUD H, FATHY A, KAMEL S. An effective hybrid approach based on arithmetic optimization algorithm and sine cosine algorithm for integrating battery energy storage system into distribution networks[J]. Journal of Energy Storage, 2022, 49: 104154. doi: 10.1016/j.est.2022.104154
    [16]
    LI N, WANG L. Bare-bones based sine cosine algorithm for global optimization[J]. Journal of Computational Science, 2020, 47: 101219. doi: 10.1016/j.jocs.2020.101219
    [17]
    LONG W, WU T, LIANG X, et al. Solving high-dimensional global optimization problems using an improved sine cosine algorithm[J]. Expert Systems With Applications, 2019, 123: 108-126. doi: 10.1016/j.eswa.2018.11.032
    [18]
    GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering With Computers, 2013, 29(1): 17-35. doi: 10.1007/s00366-011-0241-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (260) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return