Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
ZENG Jinbao, JIANG Cuixiang, ZHANG Yihao. Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006
Citation: ZENG Jinbao, JIANG Cuixiang, ZHANG Yihao. Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006

Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model

doi: 10.21656/1000-0887.450006
  • Received Date: 2204-01-08
  • Rev Recd Date: 2024-03-01
  • Available Online: 2024-10-31
  • Publish Date: 2024-10-01
  • A new PD-FEM (peridynamics-finite element method) hybrid model method was proposed for solving thermal-mechanical coupling problems. Its solution region was divided into peridynamics and finite element subregions. The hybrid bonds introduced to mixed these two subregions were composed of finite element nodes and peridynamics material points. The hybrid model was used to simulate damage behavior of alumina ceramic plates under thermal shock loads. Calculation results showed that the cracks initiation and propagation obtained by the hybrid model were in good agreement with experiment results, which validated the accuracy and availability of the hybrid model. The PD-FEM hybrid model inherits the advantage of peridynamics in dealing with discontinuous problems. Because the finite element method is introduced, the model significantly improves the efficiency of studying thermal-mechanical coupling problems using peridynamics method.
  • loading
  • 赵婷婷, 范立坤, 黎阳. 陶瓷材料抗热震性的研究进展[J]. 机械工程材料, 2022,46(12): 1-8.

    (ZHAO Tingting, FAN Likun, LI Yang. Research progress on thermal shock resistance of ceramic materials[J].Materials for Mechanical Engineering,2022,46(12): 1-8. (in Chinese))
    [2]李鸿鹏, 凌松, 戚振彪, 等. 热力耦合问题数学均匀化方法的计算精度[J]. 应用数学和力学, 2020,41(1): 54-69. (LI Hongpeng, LING Song, QI Zhenbiao, et al. Accuracy of the mathematical homogenization method for thermomechanical problems[J].Applied Mathematics and Mechanics,2020,41(1): 54-69. (in Chinese))
    [3]李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020,41(8): 877-886. (LI Ruoyu, WANG Tianhong. Thermo-mechanical buckling analysis of thin plates[J].Applied Mathematics and Mechanics,2020,41(8): 877-886. (in Chinese))
    [4]杨国欣, 郑世风, 李定玉, 等. 考虑损伤判据温度相关性的相场法模拟氧化铝热冲击裂纹扩展[J]. 应用数学和力学, 2022,43(11): 1259-1267. (YANG Guoxin, ZHENG Shifeng, LI Dingyu, et al. Thermal shock crack propagation of alumina simulated with the phase-field method under temperature-dependent damage criteria[J].Applied Mathematics and Mechanics,2022,43(11): 1259-1267. (in Chinese))
    [5]马玉娥, 陈鹏程, 郭雯, 等.基于光滑有限元法的热-弹相场断裂研究[J]. 固体力学学报, 2023,44(3): 346-354. (MA Yu’e, CHEN Pengcheng, GUO Wen, et al. Stady on thermo-elastic phase fracture modeling based on the cell-based smoothed finite element method[J].Chinese Journal of Solid Mechanics,2023,44(3): 346-354. (in Chinese))
    [6]SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J].Journal of Mechanics Physics of Solids,2000,48(1): 175-209.
    [7]SILLING S A. Linearized theory of peridynamic states[J].Journal of Elasticity,2010,99(1): 85-111.
    [8]SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling[J].Journal of Elasticity,2007,88(2): 151-184.
    [9]BOBARU F, DUANGPANYA M. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities[J].Journal of Computational Physics,2012,231(7): 2764-2785.
    [10]BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J].International Journal of Heat and Mass Transfer,2010,53(19/20): 4047-4059.
    [11]OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J].Journal of the Mechanics and Physics of Solids,2014,64: 1-23.
    [12]D’ANTUONO P, MORANDINI M. Thermal shock response via weakly coupled peridynamic thermo-mechanics[J].International Journal of Solids and Structures,2017,129: 74-89.
    [13]WANG Y T, ZHOU X P, ZHANG T. Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach[J].Mechanics of Materials,2019,137: 103133.
    [14]GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J].Continuum Mechanics and Thermodynamics,2019,31: 907-973.
    [15]WANG Y T, ZHOU X P, ZHANG T. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J].European Journal of Mechanics A: Solids,2019,73: 282-305.
    [16]李星, 顾鑫, 夏晓舟, 等. 考虑相变的近场动力学热-力耦合模型及多孔介质冻结破坏模拟[J]. 力学学报, 2022,54(12): 3310-3318. (LI Xing, GU Xin, XIA Xiaozhou, et al. Peridynamic thermomechanical coupling model with phase change and simulation of freezing failure of porous media[J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(12): 3310-3318. (in Chinese))
    [17]KILIC B, MADENCI E. Coupling of peridynamic theory and the finite element method[J].Journal of Mechanics and Structures,2010,5(5): 707-733.
    [18]LIU W Y, HONG J W. A coupling approach of discretized peridynamics with finite element method[J].Commuter Methods in Applied Mechanics and Engineering,2012,245: 163-175.
    [19]SELESON P, BENDDINE S, PRUDHOMME S. A force-based coupling scheme for peridynamics and classical elasticity[J].Computational Materials Science,2013,66: 34-49.
    [20]BIE Y H, CUI X Y, LI Z C. A coupling approach of state-based peridynamics with node-based smoothed finite element method[J].Computer Methods in Applied Mechanics and Engineering,2018,331: 675-700.
    [21]BIE Y H, LIU Z M, YANG H, et al. Abaqus implementation of dual peridynamics for brittle fracture[J].Computer Methods in Applied Mechanics and Engineering,2020,372: 113398.
    [22]章青, 郁杨天, 顾鑫. 近场动力学与有限元的混合建模方法[J]. 计算力学学报, 2016,33(4): 441-448. (ZHANG Qing, YU Yangtian, GU Xin. Hybrid modeling methods of peridynamics and finite element method[J].Chinese Journal of Computational Mechanics,2016,33(4): 441-448. (in Chinese))
    [23]史鑫, 赵剑宁, 杨苗苗, 等. 含高温度梯度及接触热阻非线性热力耦合问题的谱元法[J]. 力学学报, 2022,54(7): 1960-1969. (SHI Xin, ZHAO Jianning, YANG Miaomiao, et al. Spectral element method for nonlinear thermomechanical coupling problems with high temperature gradient and thermal contact resistance[J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(7): 1960-1969. (in Chinese))
    [24]孔祥谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999. (KONG Xiangqian.Thermal Stress Analysis by Finite Element Method[M]. Shanghai: Shanghai Jiao Tong University Press, 1999. (in Chinese))
    [25]王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. (WANG Maocheng.Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese))
    [26]MADENCI E, OTERKUS E.Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
    [27]WANG Y T, ZHOU X P, KOU M M. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks[J].International Journal of Fracture,2018,211: 13-42.
    [28]SHAO Y F, LIU B Y, WANG X H, et al. Crack propagation speed in ceramic during quenching[J].Journal of the European Ceramic Society,2018,38: 2879-2885.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (83) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return