Citation: | CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027 |
BELHAJ A F, ELRAIES K A, MAHMOOD S M, et al. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review[J].Journal of Petroleum Exploration and Production Technology,2020,10(1): 125-137.
|
[2]ROSEN M J, KUNJAPPU J T.Surfactants and Interfacial Phenomena[M]. John Wiley & Sons, 2012.
|
[3]STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J].Annual Review of Fluid Mechanics,2004,36: 381-411.
|
[4]孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020,41(10): 1157-1170.(SUN Tao, PANG Mingjun, FEI Yang. Effects of bubble spacings on interface properties and wake flow for 2 contaminated spherical bubbles[J].Applied Mathematics and Mechanics,2020,41(10): 1157-1170.(in Chinese))
|
[5]MANIKANTAN H, SQUIRES T M. Surfactant dynamics: hidden variables controlling fluid flows[J].Journal of Fluid Mechanics,2020,892: P1.
|
[6]STONE H A. Dynamics of drop deformation and breakup in viscous fluids[J].Annual Review of Fluid Mechanics,1994,26: 65-102.
|
[7]TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J].Journal of Computational Physics,2001,169(2): 708-759.
|
[8]MITTAL R, IACCARINO G. Immersed boundary methods[J].Annual Review of Fluid Mechanics,2005,37: 239-261.
|
[9]STONE H A, LEAL L G. The effects of surfactants on drop deformation and breakup[J].Journal of Fluid Mechanics,1990,220: 161-186.
|
[10]MILLIKEN W J, LEAL L G. The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility[J].Journal of Colloid and Interface Science,1994,166(2): 275-285.
|
[11]MURADOGLU M, TRYGGVASON G. A front-tracking method for computation of interfacial flows with soluble surfactants[J].Journal of Computational Physics,2008,227(4): 2238-2262.
|
[12]LUO Z Y, SHANG X L, BAI B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J].Physics of Fluids,2019,31(11): 117104.
|
[13]LUO Z Y, SHANG X L, BAI B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J].Physics of Fluids,2018,30(7): 077101.
|
[14]LAI M C, TSENG Y H, HUANG H. An immersed boundary method for interfacial flows with insoluble surfactant[J].Journal of Computational Physics,2008,227(15): 7279-7293.
|
[15]LAI M C, TSENG Y H, HUANG H. Numerical simulation of moving contact lines with surfactant by immersed boundary method[J].Communications in Computational Physics,2010,8(4): 735-757.
|
[16]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1): 201-225.
|
[17]OSHER S, FEDKIW R P. Level set methods: an overview and some recent results[J].Journal of Computational Physics,2001,169(2): 463-502.
|
[18]JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J].Journal of Computational Physics,1999,155(1): 96-127.
|
[19]RENARDY Y Y, RENARDY M, CRISTINI V. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio[J].European Journal of Mechanics B: Fluids,2002,21(1): 49-59.
|
[20]JAMES A J, LOWENGRUB J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J].Journal of Computational Physics,2004,201(2): 685-722.
|
[21]XU J J, LI Z, LOWENGRUB J, et al. A level-set method for interfacial flows with surfactant[J].Journal of Computational Physics,2006,212(2): 590-616.
|
[22]LARADJI M, GUO H, GRANT M, et al. The effect of surfactants on the dynamics of phase separation[J].Journal of Physics:Condensed Matter,1992,4(32): 6715-6728.
|
[23]LIU H H, ZHANG Y H. Phase-field modeling droplet dynamics with soluble surfactants[J].Journal of Computational Physics,2010,229(24): 9166-9187.
|
[24]ENGBLOM S, DO-QUANG M, AMBERG G, et al. On diffuse interface modeling and simulation of surfactants in two-phase fluid flow[J].Communications in Computational Physics,2013,14(4): 879-915.
|
[25]SOLIGO G, ROCCON A, SOLDATI A. Coalescence of surfactant-laden drops by phase field method[J].Journal of Computational Physics,2019,376: 1292-1311.
|
[26]ZHU G P, KOU J S, YAO B W, et al. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants[J].Journal of Fluid Mechanics,2019,879: 327-359.
|
[27]ZONG Y J, ZHANG C H, LIANG H, et al. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method[J].Physics of Fluids,2020,32(12): 122105.
|
[28]ZHOU W N, XING Y F, LIU X L, et al. Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method[J].Physics of Fluids,2023,35(1): 012109.
|
[29]GUO Z, LIN P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects[J].Journal of Fluid Mechanics,2015,766: 226-271.
|
[30]李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019,40(9): 957-967.(LI Jiayu, ZENG Zhong, QIAO Long. Numerical simulation of droplets’ dynamic wetting process with the phase field method[J].Applied Mathematics and Mechanics,2019,40(9): 957-967.(in Chinese))
|
[31]TANG T, QIAO Z H. Efficient numerical methods for phase-field equations[J].Scientia Sinica Mathematica,2020,50(6): 775.
|
[32]YUE P T, ZHOU C F, FENG J J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations[J].Journal of Computational Physics,2007,223(1): 1-9.
|
[33]HUANG Z Y, LIN G, ARDEKANI A M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J].Journal of Computational Physics,2020,406: 109192.
|
[34]DONG S, SHEN J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J].Journal of Computational Physics,2012,231(17): 5788-5804.
|
[35]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1): 202-228.
|
[36]YUN A, LI Y B, KIM J. A new phase-field model for a water-oil-surfactant system[J].Applied Mathematics and Computation,2014,229: 422-432.
|
[37]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2): 335-354.
|
[38]LIU H H, WU L, BA Y, et al. A lattice Boltzmann method for axisymmetric thermocapillary flows[J].International Journal of Heat and Mass Transfer,2017,104: 337-350.
|
[39]CHANG C H, FRANSES E I. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,100: 1-45.
|
[40]YUE L Q, CHAI Z H, WANG H L, et al. Improved phase-field-based lattice Boltzmann method for thermocapillary flow[J].Physical ReviewE,2022,105(1/2): 015314.
|
[41]GUERMOND J L, MINEV P, SHEN J. An overview of projection methods for incompressible flows[J].Computer Methods in Applied Mechanics and Engineering,2006,195(44/47): 6011-6045.
|
[42]POPINET S. Numerical models of surface tension[J].Annual Review of Fluid Mechanics,2018,50: 49-75.
|
[43]CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J].Physical Review E,2018,98(6): 063314.
|
[44]XIAO Y, ZENG Z, ZHANG L Q, et al. A spectral element-based phase field method for incompressible two-phase flows[J].Physics of Fluid,2022,34(2): 022114.
|
[45]ALAND S, VOIGT A. Benchmark computations of diffuse interface models for two-dimensional bubble dynamics[J].International Journal for Numerical Methods in Fluids,2012,69(3): 747-761.
|
[46]TAYLOR G I. The formation of emulsions in definable fields of flow[J].Proceedings of the Royal Society of London (Series A): Containing Papers of a Mathematical and Physical Character,1934,146(858): 501-523.
|
[47]SHAPIRA M, HABER S. Low Reynolds number motion of a droplet in shear flow including wall effects[J].International Journal of Multiphase Flow,1990,16(2): 305-321.
|
[48]ZHOU H, POZRIKIDIS C. The flow of suspensions in channels: single files of drops[J].Physics of Fluids A: Fluid Dynamics,1993,5(2): 311-324.
|
[49]LI J, RENARDY Y Y, RENARDY M. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method[J].Physics of Fluids,2000,12(2): 269-282.
|
[50]SOLIGO G, ROCCON A, SOLDATI A. Deformation of clean and surfactant-laden droplets in shear flow[J].Meccanica,2020,55(2): 371-386.
|