Volume 46 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
YANG Shuai, YUAN Si. EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
Citation: YANG Shuai, YUAN Si. EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036

EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis

doi: 10.21656/1000-0887.450036
Funds:

The National Science Foundation of China(51878383;51378293)

  • Received Date: 2024-02-18
  • Rev Recd Date: 2024-05-08
  • For the elements of degree m(>1), simplified form solution u* based on the element energy projection (EEP) method has at least 1-order higher accuracy than conventional finite element solution uh.As a result, the EEP element, with simplified form EEP solution uh in as the final solution, was proposed, and a corresponding adaptive finite element analysis strategy for EEP elements was developed. By means of the developed algorithm, the 1D 2-point boundary value problem was analyzed, and the computation results are in good agreement with theoretical solutions, verifying the effectiveness and reliability of the proposed adaptivity strategy. The theoretical study and numerical experiments show that, the proposed method provides an EEP element solution satisfying the preset error tolerances in the maximum norm with fewer elements and less adaptive steps compared to conventional finite elements.
  • loading
  • BABUSKA I, RHEINBOLDT W C. A-posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering,1978,12(10): 1597-1615.
    [2]BABUSKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering,1979,17: 519-540.
    [3]STRANG W G, FIX G J. An Analysis of the Finite Element Method[M]. New Jersey: Prentice-Hall, 1973.
    [4]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1331-1364.
    [5]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1365-1382.
    [6]KU J, STYNES M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems[J]. BIT Numerical Mathematics,2024,64(1): 7.
    [7]BRUNNER M, INNERBERGER M, MIRAI A, et al. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs[J]. IMA Journal of Numerical Analysis,2024,44(3): 1560-1596.
    [8]WANG C, PING X, WANG X. An adaptive finite element method for crack propagation based on a multifunctional super singular element[J]. International Journal of Mechanical Sciences,2023,247: 108191.
    [9]裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024,45(4): 391-399. (QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics,2024,45(4): 391-399. (in Chinese))
    [10]袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004,21(2): 1-9.(YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional fem[J]. Engineering Mechanics,2004,21(2): 1-9.(in Chinese))
    [11]袁驷, 和雪峰. 基于EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2006,27(11): 1280-1291. (YUAN Si, HE Xuefeng. Self-adaptive strategy for one-dimensional finite element method based on EEP method[J]. Applied Mathematics and Mechanics,2006,27(11): 1280-1291. (in Chinese))
    [12]YUAN S, WU Y, XING Q. Recursive super-convergence computation for multi-dimensional problemsvia one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition),2018,39(7): 1031-1044.
    [13]YUAN S, YUAN Q. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions[J]. Applied Mathematics and Mechanics (English Edition),2022,43(4): 603-614.
    [14]JIANG K, YUAN S, XING Q. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique[J]. Engineering Computations,2020,37(8): 2847-2869.
    [15]袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式: Ⅰ算法公式[J]. 工程力学, 2007,24(10): 1-5.(YUAN Si, WANG Xu, XING Qinyan, et al. A scheme with optimal order of super-convergence based on eep method: Ⅰ formulation[J]. Engineering Mechanics,2007,24(10): 1-5.(in Chinese))
    [16]袁驷, 杨帅. 一维Galerkin有限元EEP超收敛计算的加强格式[J/OL]. 工程力学, 2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(YUAN Si, YANG Shuai. Enhanced form for EEP super-convergence calculation in one-dimensional Galerkin finite element method[J/OL]. Engineering Mechanics,2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(in Chinese))
    [17]袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014,31(12): 1-3.(YUAN Si, XING Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics,2014,31(12): 1-3.(in Chinese))
    [18]黄泽敏, 袁驷. 线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算[J]. 工程力学, 2022,39(S1): 9-14.(HUANG Zemin, YUAN Si. Nodal accuracy improvement and super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics,2022,39(S1): 9-14.(in Chinese))
    [19]张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996,35(4): 421-429.(ZHANG Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam[J]. Journal of Fudan University (Natural Science), 1996,35(4): 421-429.(in Chinese))
    [20]赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000,23(4): 6-11.(ZHAO Xinzhong, CHEN Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence[J]. Journal of Natural Science of Hunan Normal University,2000,23(4): 6-11.(in Chinese))
    [21]孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019,36(2): 17-25.(SUN Haohan, YUAN Si. Performance of the adaptive finite element method based on the element-energy-projection technique[J]. Engineering Mechanics,2019,36(2): 17-25.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return