Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHAO Liang, LI Yawei, WANG Jianbao, LI Dongdong, DING Shuai, BI Qingjie. Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086
Citation: ZHAO Liang, LI Yawei, WANG Jianbao, LI Dongdong, DING Shuai, BI Qingjie. Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086

Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders

doi: 10.21656/1000-0887.450086
  • Received Date: 2024-04-07
  • Rev Recd Date: 2024-05-28
  • Publish Date: 2024-09-01
  • Experimental research and finite element analysis were carried out to study the phenomenon of axial shortening and buckling instability of carbon fiber fully wound composite gas cylinders with titanium alloy thin-wall liners after hydraulic test. The results show that, after self-tightening and unloading, the area near the polar hole of the head will be concave axially, the area near the equator of the head will expand radially, and the whole head will become shorter axially. The axial shortening of the head will be 6.15 mm and 6.363 mm, respectively, and the error of the finite element calculation will be 3.46%. The finite element simulation results are in good agreement with the experimental results. Finally, the multi-pole hole method was used to optimize the thickness distribution of the fiber layer of the head, and the extreme thickness of the head was reduced by 32.6%, and the transition was made smoother. After the optimization, the gas cylinder will be slightly extended along the axis, with an average elongation of 0.6 mm. By CT and endoscope detections, no buckling instability would appear in the liner, which means an effective solution of the problems of axial shortening and liner buckling after hydraulic tests.
  • (Recommended by TIAN Kuo, M.AMM Youth Editorial Board)
  • loading
  • [1]
    冯雪, 沈俊, 田桂, 等. 复合材料压力容器在航天领域的应用研究[J]. 火箭推进, 2014, 40 (4): 35-42.

    FENG Xue, SHEN Jun, TIAN Gui, et al. Research of composite over-wrapper pressure vessels for space application[J]. Journal of Rocket Propulsion, 2014, 40 (4): 35-42. (in Chinese)
    [2]
    陈绍杰. 先进复合材料的现状和趋势: 第二十二届欧洲SAMPE国际会议与第三十六届JEC复合材料展览会评述[J]. 高科技纤维与应用, 2001(3): 1-5.

    CHEN Shaojie. Synthesis actuality and direction of advanced composite material[J]. Hi-Tech Fiber and Application, 2001(3): 1-5. (in Chinese)
    [3]
    谢清泉, 朱美丽, 司慧涵. 压力容器用复合材料的性能与应用[J]. 现代制造技术与装备, 2014(2): 32-33.

    XIE Qingquan, ZHU Meili, SI Huihan. Performance and application of composite materials for pressure vessels[J]. Modern Manufacturing Technology and Equipment, 2014(2): 32-33. (in Chinese)
    [4]
    KIM C U, KANG J H, HONG C S, et al. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm[J]. Composite Structures, 2005, 67 (4): 443-453. doi: 10.1016/j.compstruct.2004.02.003
    [5]
    舒明杰, 李云仲, 刘翀. 复合材料压力容器自紧后残余变形研究及有限元分析[J]. 玻璃钢/复合材料, 2017(9): 73-77.

    SHU Mingjie, LI Yunzhong, LIU Chong. Residual deformation of composite pressure vessels after autofrettage and its finite element analysis[J]. Composites Science and Engineering, 2017(9): 73-77. (in Chinese)
    [6]
    王欢, 余珊, 王特. 钛合金内衬碳纤维缠绕气瓶水压后轴向缩短分析[J]. 玻璃钢/复合材料, 2018(6): 34-38.

    WANG Huan, YU San, WANG Te. Axial shortening analysis of carbon filament-wound pressure cylinder with titanium alloy liner after hydrostatic test[J]. Composites Science and Engineering, 2018(6): 34-38. (in Chinese)
    [7]
    王荣国, 赫晓东, 胡照会, 等. 超薄金属内衬复合材料压力容器的结构分析[J]. 复合材料学报, 2020(4): 131-138.

    WANG Rongguo, HE Xiaodong, HU Zhaohui, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica, 2020(4): 131-138. (in Chinese)
    [8]
    MESSAGER T, PYRZ M, GINESTEC B, et al. Optimal laminations of thin underwater composite cylindrical vessels[J]. Composite Structures, 2002, 58 (4): 529-537.
    [9]
    气瓶水压方法: GB/T 9251—2011[S]. 北京: 中国标准出版社, 2011.

    Method for hydrostatic test of gas cylinders: GB/T 9251—2011[S]. Beijing: Standards Press of China, 2011. (in Chinese)
    [10]
    金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.

    Metallic materials, tensile testing, part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [11]
    吴世俊. 固体火箭发动机壳体不同开口比封头补强优化研究[D]. 合肥: 合肥工业大学, 2023.

    WU Shijun. Optimization research on head reinforcement with different opening ratios of solid rocket motor casing[D]. Hefei: Hefei University of Technology, 2023. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(6)

    Article Metrics

    Article views (101) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return