Citation: | LIU Jiahao, ZHENG Supei, CHEN Mengying, GUO Yilin. Low-Dissipation 5th-Order Entropy Stable Schemes[J]. Applied Mathematics and Mechanics, 2025, 46(4): 528-541. doi: 10.21656/1000-0887.450091 |
[1] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5
|
[2] |
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
|
[3] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
|
[4] |
TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
|
[5] |
ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021
|
[6] |
FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 544-573. doi: 10.1137/110836961
|
[7] |
FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing, 2016, 68: 42-63. doi: 10.1007/s10915-015-0128-y
|
[8] |
BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018, 44: 1153-1181. doi: 10.1007/s10444-017-9576-2
|
[9] |
郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022, 49(3): 329-335.
ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335. (in Chinese)
|
[10] |
郑素佩, 徐霞, 封建湖, 等. 高阶保号熵稳定格式[J]. 数学物理学报, 2021, 41(5): 1296-1310.
ZHENG Supei, XU Xia, FENG Jianhu, et al. High order sign preserving entropy stable schemes[J]. Acta Mathematica Scientia, 2021, 41(5): 1296-1310. (in Chinese)
|
[11] |
郑素佩, 建芒芒, 封建湖, 等. 保号WENO-AO型中心迎风格式[J]. 计算物理, 2022, 39(6): 677-686.
ZHENG Supei, JIAN Mangmang, FENG Jianhu, et al. Sign preserving WENO-AO-type central upwind schemes[J]. Chinese Journal of Computational Physics, 2022, 39(6): 677-686. (in Chinese)
|
[12] |
张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. (in Chinese) doi: 10.21656/1000-0887.440178
|
[13] |
FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics, 2016, 305: 333-359. doi: 10.1016/j.jcp.2015.10.037
|
[14] |
FU L. Review of the high-order TENO schemes for compressible gas dynamics and turbulence[J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2493-2526. doi: 10.1007/s11831-022-09877-7
|
[15] |
GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X
|
[16] |
GEROLYMOS G A, SÉNÉCHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524. doi: 10.1016/j.jcp.2009.07.039
|
[17] |
LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193. doi: 10.1002/cpa.3160070112
|
[18] |
LEFLOCH P G, MERCIER J M, ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis, 2002, 40(5): 1968-1992. doi: 10.1137/S003614290240069X
|