Volume 45 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG Xin, LI Zhen, JI Haibo, YANG Hongjun, LI Bingyang, WANG Pengfei. Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103
Citation: WANG Xin, LI Zhen, JI Haibo, YANG Hongjun, LI Bingyang, WANG Pengfei. Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103

Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures

doi: 10.21656/1000-0887.450103
  • Received Date: 2024-04-15
  • Rev Recd Date: 2024-07-04
  • Publish Date: 2024-08-01
  • With the increasing frequency of human space activities, the orbital space environment is deteriorating. It is of great practical significance to enhance the strength and toughness of spacecraft structures. High strength & toughness bio-inspired helicoidal composite metastructures with mid-plane symmetry characteristics were designed and a corresponding hot-pressing preparation process was developed. The carbon fibre reinforced polymer metastructures with cross-ply, quasi-isotropic and 5°, 10° and 20° helicoidal lay-ups were characterized by quasi-static indentation performance tests, and the damage modes and the failure mechanisms were analyzed. The load-displacement curves, peak forces, failure displacements, stiffnesses and energy absorptions, were used as the mechanical property measures, with the thicknesses of the structures including 37 and 73 layers. The results show that, compared with the traditional lay-up method, the symmetric helicoidal lay-up can effectively reduce the interlayer stress and significantly improve the quasi-static indentation performances of the metastructures. Especially with a helicoidal angle of 10°, the metastructures have excellent performance enhancement in terms of peak loads and energy absorptions. The research results not only provide a theoretical support for the design and fabrication of high-performance composite metastructures in the aerospace field, but also lay a practical foundation for their practical application.
  • loading
  • [1]
    吴伟仁, 于登云, 刘继忠, 等. 我国太空活动现代化治理中的若干重大问题[J]. 科学通报, 2021, 66(15): 1795-1801.

    WU Weiren, YU Dengyun, LIU Jizhong, et al. Key issues of modernization of space governance[J]. Science China Press, 2021, 66(15): 1795-1801. (in Chinese)
    [2]
    龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13.

    GONG Zizheng, ZHAO Qiuyan, LI Ming, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13. (in Chinese)
    [3]
    汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317-323.

    TANG Jingshi, CHENG Haowen. The origin, status and future of space debris[J]. Physics, 2021, 50(5): 317-323. (in Chinese)
    [4]
    黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51.

    HUANG Yizhou, WANG Zhijin, LIU Gefei. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi'an Aeronautical University, 2021, 39(5): 44-51. (in Chinese)
    [5]
    江洪, 彭导琦. 先进复合材料在航天航空器中的应用[J]. 新材料产业, 2022(1): 2-7.

    JIANG Hong, PENG Daoqi. Application of advanced composition materials in aerospace[J]. Advanced Materials Industry, 2022(1): 2-7. (in Chinese)
    [6]
    李玉峰, 李玲丽, 潘宗友. 一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J]. 宇航学报, 2014, 35(11): 1318-1325.

    LI Yufeng, LI Lingli, PAN Zongyou. Characteristic study on titanium-liner/carbon-fiber overwrapped vessels on the satellite[J]. Journal of Astronautics, 2014, 35(11): 1318-1325. (in Chinese)
    [7]
    郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683.

    ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. (in Chinese)
    [8]
    刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展[J]. 复合材料科学与工程, 2022(1): 117-128.

    LIU Xiaojun, ZHAN Li, ZOU Ailing, et al. Research progress on interlaminar toughening technology of fiber reinforced composites[J]. Journal Composites Science and Engineering, 2022(1): 117-128. (in Chinese)
    [9]
    GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008.
    [10]
    YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844.
    [11]
    HUANG W, SHISHEHBOR M, GUARÍN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials, 2020, 19: 1236-1243.
    [12]
    GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials, 2018, 30(9): 1705295.
    [13]
    FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus[J]. Advanced Materials, 2009, 21(4): 391-400.
    [14]
    RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia, 2005, 53(15): 4281-4292.
    [15]
    CHENG L, WANG L, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research, 2008, 23(11): 2854-2872.
    [16]
    BOßELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta, 2007, 463(1/2): 65-68.
    [17]
    CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596.
    [18]
    YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
    [19]
    ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(1): 1-7.
    [20]
    CHENG L, WANG L, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24: 3253-3267.
    [21]
    RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth, 2005, 283(1/2): 1-7.
    [22]
    CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering A, 2006, 423(1/2): 237-242.
    [23]
    BOULIGAND Y. Sur une architecture torsade répandue dans de nombreuses cuticules d'Arthropodes[J]. CR Acad Sci, 1965, 261: 3665-3668.
    [24]
    WANG M, LI L, NIU S C, et al. Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage[J]. Journal of Materials Research and Technology, 2022, 21: 3169-3180.
    [25]
    LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289.
    [26]
    LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites (Part A): Applied Science and Manufacturing, 2019, 127: 105625.
    [27]
    LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics, 2020, 87(3): 031007.
    [28]
    LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106.
    [29]
    LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction[J]. International Journal of Impact Engineering, 2022, 169: 104320.
    [30]
    YIN S, CHEN H, YANG R, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science, 2020, 1(7): 100109.
    [31]
    YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
    [32]
    王欢, 欧阳文婷, 彭华新, 等. 一种仿生复合材料螺旋铺层设计方法: CN110962364B[P]. 2021-03-26.

    WANG Huan, OUYANG Wenting, PENG Huaxin, et al. A design method for spiral layering of biomimetic composite materials: CN110962364B[P]. 2021-03-26. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (199) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return