Citation: | WANG Xin, LI Zhen, JI Haibo, YANG Hongjun, LI Bingyang, WANG Pengfei. Design and Analysis of High Strength and Toughness Bio-Inspired Helicoidal Composite Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1106-1116. doi: 10.21656/1000-0887.450103 |
[1] |
吴伟仁, 于登云, 刘继忠, 等. 我国太空活动现代化治理中的若干重大问题[J]. 科学通报, 2021, 66(15): 1795-1801.
WU Weiren, YU Dengyun, LIU Jizhong, et al. Key issues of modernization of space governance[J]. Science China Press, 2021, 66(15): 1795-1801. (in Chinese)
|
[2] |
龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13.
GONG Zizheng, ZHAO Qiuyan, LI Ming, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13. (in Chinese)
|
[3] |
汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317-323.
TANG Jingshi, CHENG Haowen. The origin, status and future of space debris[J]. Physics, 2021, 50(5): 317-323. (in Chinese)
|
[4] |
黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51.
HUANG Yizhou, WANG Zhijin, LIU Gefei. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi'an Aeronautical University, 2021, 39(5): 44-51. (in Chinese)
|
[5] |
江洪, 彭导琦. 先进复合材料在航天航空器中的应用[J]. 新材料产业, 2022(1): 2-7.
JIANG Hong, PENG Daoqi. Application of advanced composition materials in aerospace[J]. Advanced Materials Industry, 2022(1): 2-7. (in Chinese)
|
[6] |
李玉峰, 李玲丽, 潘宗友. 一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J]. 宇航学报, 2014, 35(11): 1318-1325.
LI Yufeng, LI Lingli, PAN Zongyou. Characteristic study on titanium-liner/carbon-fiber overwrapped vessels on the satellite[J]. Journal of Astronautics, 2014, 35(11): 1318-1325. (in Chinese)
|
[7] |
郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683.
ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. (in Chinese)
|
[8] |
刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展[J]. 复合材料科学与工程, 2022(1): 117-128.
LIU Xiaojun, ZHAN Li, ZOU Ailing, et al. Research progress on interlaminar toughening technology of fiber reinforced composites[J]. Journal Composites Science and Engineering, 2022(1): 117-128. (in Chinese)
|
[9] |
GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008.
|
[10] |
YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844.
|
[11] |
HUANG W, SHISHEHBOR M, GUARÍN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials, 2020, 19: 1236-1243.
|
[12] |
GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials, 2018, 30(9): 1705295.
|
[13] |
FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus[J]. Advanced Materials, 2009, 21(4): 391-400.
|
[14] |
RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia, 2005, 53(15): 4281-4292.
|
[15] |
CHENG L, WANG L, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research, 2008, 23(11): 2854-2872.
|
[16] |
BOßELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta, 2007, 463(1/2): 65-68.
|
[17] |
CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596.
|
[18] |
YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
|
[19] |
ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(1): 1-7.
|
[20] |
CHENG L, WANG L, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24: 3253-3267.
|
[21] |
RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth, 2005, 283(1/2): 1-7.
|
[22] |
CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering A, 2006, 423(1/2): 237-242.
|
[23] |
BOULIGAND Y. Sur une architecture torsade répandue dans de nombreuses cuticules d'Arthropodes[J]. CR Acad Sci, 1965, 261: 3665-3668.
|
[24] |
WANG M, LI L, NIU S C, et al. Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage[J]. Journal of Materials Research and Technology, 2022, 21: 3169-3180.
|
[25] |
LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289.
|
[26] |
LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites (Part A): Applied Science and Manufacturing, 2019, 127: 105625.
|
[27] |
LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics, 2020, 87(3): 031007.
|
[28] |
LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106.
|
[29] |
LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction[J]. International Journal of Impact Engineering, 2022, 169: 104320.
|
[30] |
YIN S, CHEN H, YANG R, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science, 2020, 1(7): 100109.
|
[31] |
YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
|
[32] |
王欢, 欧阳文婷, 彭华新, 等. 一种仿生复合材料螺旋铺层设计方法: CN110962364B[P]. 2021-03-26.
WANG Huan, OUYANG Wenting, PENG Huaxin, et al. A design method for spiral layering of biomimetic composite materials: CN110962364B[P]. 2021-03-26. (in Chinese)
|
[1] | SUN Yang, FAN Zhenjie, LIU Mabao. Carbon Fiber Shape and Interphase Effects on the Equivalent Thermoelastic Properties of Composites[J]. Applied Mathematics and Mechanics, 2025, 46(4): 495-504. doi: 10.21656/1000-0887.450151 |
[2] | CHEN Cheng, LIU Xiang. Rigid-Flexible-Thermal Coupling Dynamic Modeling and Hybrid Control of Membrane Antenna Spacecraft[J]. Applied Mathematics and Mechanics, 2025, 46(3): 283-297. doi: 10.21656/1000-0887.450094 |
[3] | YAO Qian, YANG Zhao, WANG Xin, ZHAI Zhi, LI Zhen, GENG Xinyu, LI Bingyang, WANG Pengfei. A Review of Design Methods for Mechanical Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 974-1000. doi: 10.21656/1000-0887.450106 |
[4] | WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082 |
[5] | GAO Zhaorui, LI Zheng, JIANG Yongfeng, SHEN Cheng, MENG Han. Acoustic Performance Rapid Prediction and Structural Optimization for Resonant Sound-Absorbing Metamaterials Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1058-1069. doi: 10.21656/1000-0887.450170 |
[6] | JI Zhengjiang, CHENG Linhao, ZHENG Xitao, YAN Leilei. Electromagnetic Wave Dual-Polarized Absorption and Flexural Performance Design of Composite Laminates Based on Carbon Fibers[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102 |
[7] | ZHENG Bingqian, QIANG Lusheng, SONG Xiaotong, NI Changye, ZHANG Rui. Load-Bearing and Multi-Point Ballistic Performances of Hybrid Sandwich Meta-Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1037-1046. doi: 10.21656/1000-0887.450101 |
[8] | YI Zhonggui, YUE Baozeng, LIU Feng, LU Tao, DENG Mingle. Hamiltonian Structures and Stability Analysis for Rigid-Liquid Coupled Spacecraft Systems[J]. Applied Mathematics and Mechanics, 2023, 44(5): 499-512. doi: 10.21656/1000-0887.430379 |
[9] | JIANG Ruisong, XU Mengbo, ZHANG Fan, HU Weipeng, DENG Zichen. Structure-Preserving Layout Optimization of Precision Devices in Spacecraft[J]. Applied Mathematics and Mechanics, 2022, 43(1): 26-33. doi: 10.21656/1000-0887.420095 |
[10] | LIU Xin, WU Qianqian, YU Guocai, WU Linzhi. Three-Point Bending Properties of Carbon Fiber Reinforced Polymer Composite Honeycomb Sandwich Structures With Curved Wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061 |
[11] | DU Chen, PENG Xiongqi. Lamination Design Optimization for Continuous Fiber Reinforced Composites of Variable Thicknesses[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1313-1323. doi: 10.21656/1000-0887.420410 |
[12] | YI Zhong-gui, GE Xin-sheng. Optimal Attitude Control of Underactuated Spacecrafts With the Gauss Pseudospectral Method[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1319-1330. doi: 10.21656/1000-0887.380013 |
[13] | SUN Shu-lei, MAO Jian-liang, PENG Xiong-qi. An Anisotropic Hyperelastic Constitutive Model With Fibre Bending Stiffness for Cord-Rubber Composites[J]. Applied Mathematics and Mechanics, 2014, 35(5): 471-477. doi: 10.3879/j.issn.1000-0887.2014.05.001 |
[14] | LI Xue-hua, HE Xing-suo. Gyroscopic Effect Produced During Non-Keplerian Motion of Spacecrafts[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1266-1274. doi: 10.3879/j.issn.1000-0887.2013.12.005 |
[15] | YUAN Chang-qing, LI Jun-feng, WANG Tian-shu, BAOYIN He-xi. Robust Attitude Control for Rapid Multi-Target Tracking in Spacecraft Formation Flying[J]. Applied Mathematics and Mechanics, 2008, 29(2): 169-180. |
[16] | YUE Bao-zeng. Nonlinear Coupling Dynamics of Liquid Filled Spherical Container in Microgravity[J]. Applied Mathematics and Mechanics, 2008, 29(8): 983-990. |
[17] | Yehia A. Abdel-aziz, M. H. Yehia, F. A. Abd El-Salam, M. Radwan. Periodic Motions of a Spinning Rigid Spacecraft Under the Influence of the Gravitional and Magnetic Fields[J]. Applied Mathematics and Mechanics, 2006, 27(8): 923-930. |
[18] | ZHANG Shao-qin, YANG Wei-yang. Prediction of Mode Ⅰ Crack Propagation Direction in Carbon-Fiber Reinforced Composite Plate[J]. Applied Mathematics and Mechanics, 2004, 25(6): 653-660. |
[19] | CHEN Li-qun, LIU Yan-zhu. Chaotic Attitude Motion of a Magnetic Rigid Spacecraft[J]. Applied Mathematics and Mechanics, 2003, 24(4): 385-390. |
[20] | Zhou zhu-lin. Buckling Test And Optimum Design of Fiber Reinforced Composites Plates Under Compression[J]. Applied Mathematics and Mechanics, 1993, 14(11): 1017-1024. |