Citation: | QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122 |
[1] |
郭柏灵. 非线性演化方程[M]. 上海: 上海科技教育出版社, 1995.
GUO Boling. Nonlinear Evolution Equations[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. (in Chinese)
|
[2] |
陈登远. 孤子引论[M]. 北京: 科学出版社, 2006.
CHEN Dengyuan. Introduction to Solitons[M]. Beijing: Science Press, 2006. (in Chinese)
|
[3] |
王明亮. 非线性发展方程与孤立子[M]. 兰州: 兰州大学出版社, 1990.
WANG Mingliang. Nonlinear Evolution Equations and Solitons[M]. Lanzhou: Lanzhou University Press, 1990. (in Chinese)
|
[4] |
GUO Y, PU X. KdV limit of the Euler-Poisson system[J]. Archive for Rational Mechanics and Analysis, 2014, 211(2): 673-710. doi: 10.1007/s00205-013-0683-z
|
[5] |
RONG R, PENG Y. KdV-type equation limit for ion dynamics system[J]. Communications on Pure and Applied Analysis, 2021, 20(4): 1699-1719. doi: 10.3934/cpaa.2021037
|
[6] |
范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998, 47(3): 353-362.
FAN Engui, ZHANG Hongqing. The homogeneous balance method for solving nonlinear soliton equations[J]. Acta Physica Sinica, 1998, 47(3): 353-362. (in Chinese)
|
[7] |
WEISS J. The painlevé property for partial differential equations Ⅱ: Bäcklund transformation, Lax pairs, and the Schwarzian derivative[J]. Journal of Mathematical Physics, 1983, 24(6): 1405-1413. doi: 10.1063/1.525875
|
[8] |
YANG J. Nonlinear Waves in Integrable and Nonintegrable Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2010.
|
[9] |
ROGERS C, SCHIEF W K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory[M]. New York: Cambridge University Press, 2002.
|
[10] |
HIROTA R. Exact solution of the korteweg-de vries equation for multiple collisions of solitons[J]. Physical Review Letters, 1971, 27(18): 1192-1194. doi: 10.1103/PhysRevLett.27.1192
|
[11] |
BLUMAN G W, CHEVIAKOV A F. Applications of Symmetry Methods to Partial Differential Equations[M]. New York: Springer, 2010.
|
[12] |
MATVEEV V B, SALL' M A. Scattering of solitons in the formalism of the Darboux transform[J]. Journal of Soviet Mathematics, 1986, 34(5): 1983-1987. doi: 10.1007/BF01095106
|
[13] |
MIURA R M. Korteweg-de Vries equation and generalizations Ⅰ: a remarkable explicit nonlinear transformation[J]. Journal of Mathematical Physics, 1968, 9(8): 1202-1204. doi: 10.1063/1.1664700
|
[14] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[15] |
CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what's next[J]. Journal of Scientific Computing, 2022, 92(3): 88. doi: 10.1007/s10915-022-01939-z
|
[16] |
LIN S, CHEN Y. Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions[J]. Physica D: Nonlinear Phenomena, 2023, 445: 133629. doi: 10.1016/j.physd.2022.133629
|
[17] |
石玉仁, 张娟, 杨红娟, 等. mKdV方程的双扭结单孤子及其稳定性研究[J]. 物理学报, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564
SHI Yuren, ZHANG Juan, YANG Hongjuan, et al. Single soliton of double kinks of the mKdV equation and its stability[J]. Acta Physica Sinica, 2010, 59(11): 7564-7569. (in Chinese) doi: 10.7498/aps.59.7564
|
[18] |
徐传友. 非线性偏微分方程之间的Miura变换和精确解[J]. 阜阳师范学院学报(自然科学版), 2008, 25(3): 1-4. doi: 10.3969/j.issn.1004-4329.2008.03.001
XU Chuanyou. The miura transformation between nonlinear partial differential equations and it's exact solutions[J]. Journal of Fuyang Teachers College (Natural Science), 2008, 25(3): 1-4. (in Chinese) doi: 10.3969/j.issn.1004-4329.2008.03.001
|
[19] |
FOKAS A S. A symmetry approach to exactly solvable evolution equations[J]. Journal of Mathematical Physics, 1980, 21(6): 1318-1325. doi: 10.1063/1.524581
|
[1] | FENG Yihu1, 2. Solitary Travelling Wave Solutions to Strongly Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2019, 40(1): 89-96. doi: 10.21656/1000-0887.390054 |
[2] | SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic Travelling Wave Soliton Solutions for Nonlinear Disturbed Generalized NNV Systems[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011 |
[3] | Zainal Abdul Aziz, Dennis Ling Chuan Ching, Faisal Salah Yousif. Bifurcation of Rupturing Path by the Nonlinear Damping Force[J]. Applied Mathematics and Mechanics, 2011, 32(3): 271-278. doi: 10.3879/j.issn.1000-0887.2011.03.003 |
[4] | LI Ji-bin. Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati[J]. Applied Mathematics and Mechanics, 2008, 29(4): 393-397. |
[5] | LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809. |
[6] | ZHANG Jie-fang, LIU Yu-lu. New Truncated Expansion Method and Soliton-Like Solution of Variable Coefficient KdV-MKdV Equation With Three Arbitrary Functions[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1114-1117. |
[7] | ZHANG Ren, SHA Wen-yu, JIANG Guo-rong, WANG Ji-guang. Soliton-Like Thermal Source Forcing and Singular Response of Atmosphere and Oceans to It[J]. Applied Mathematics and Mechanics, 2003, 24(6): 631-636. |
[8] | LIU Xiang-lin, CHEN Qing-hui, ZHANG Bao-cai. On Gauge Equivalent Integrable Systems and r-matrices for AKNS Hierarchy and A Coupled MKdV Hierarchy[J]. Applied Mathematics and Mechanics, 2003, 24(7): 764-770. |
[9] | ZHANG Yu-feng, ZHANG Hong-qing. A Family of Integrable Systems of Liouville and Lax Representation, Darboux Transformations for its Constrained Flows[J]. Applied Mathematics and Mechanics, 2002, 23(1): 23-30. |
[10] | TIAN Li-xin, XU Gang, LIU Zeng-rong. The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2002, 23(5): 497-506. |
[11] | FAN En-gui, ZHANG Hong-qing. A New Completely Integrable Liouville’s System, Its Lax Representation and Bi-Hamiltonian Structure[J]. Applied Mathematics and Mechanics, 2001, 22(5): 458-464. |
[12] | Wu Shengchang, Liu Xiaoqing. Spectral Method in Time for KdV Equations[J]. Applied Mathematics and Mechanics, 1996, 17(4): 357-362. |
[13] | Gao Puyun. A New Method for the Construction of Integrable Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 1996, 17(10): 933-938. |
[14] | Tang Guangsong, Yuan Cunde. Integrable Types of Nonlinear Ordinary DifferentialEquation Sets of Higher 0rders[J]. Applied Mathematics and Mechanics, 1995, 16(9): 821-828. |
[15] | Xu Bao-zhi, Fang Xiao-wei. The Expression of Soliton Solution for Sine-Gordon Equation[J]. Applied Mathematics and Mechanics, 1992, 13(6): 515-518. |
[16] | Dong Guaug-mao, Liu Zeng-rong, Xu Zheng-fan. Stochasticity near Resonances in a kind of Near-lntegrable Hamiltonian Systems Based on Smale Horseshoes[J]. Applied Mathematics and Mechanics, 1992, 13(1): 11-16. |
[17] | Tane Guang-song, Dong Ju-qing. Integrable Types of Nonlinear Ordinary Differential Equations of Higher-Orders[J]. Applied Mathematics and Mechanics, 1991, 12(11): 1029-1036. |
[18] | Li Hong-xiang. Several Classes of Integrable Nonlinear Ordinary Differential Equations (Ⅱ)——Higher-Order Equations[J]. Applied Mathematics and Mechanics, 1990, 11(6): 521-527. |
[19] | Li Hong-xiang, Z. F. Stare. Several Classes of integrable Nonlinear Ordinary Differential Equations(Ⅰ)——First-Order Equations[J]. Applied Mathematics and Mechanics, 1990, 11(3): 247-252. |
[20] | Pan Xiu-de. Solitary Wave and Similarity Solutions of the Combined KdV Equation[J]. Applied Mathematics and Mechanics, 1988, 9(3): 281-285. |