Volume 46 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
Citation: CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137

Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels

doi: 10.21656/1000-0887.450137
Funds:

11862018

12262026)

The National Science Foundation of China(12162003

  • Received Date: 2024-05-12
  • Rev Recd Date: 2024-06-07
  • Under the adjustment of solution pH values and background salt concentrations, the electroosmotic flows of the Powell-Eyring fluids in parallel plate nanochannels were studied with the homotopic perturbation method, and approximate solutions were obtained. The accuracy of the obtained approximate solution was verified with the Chebyshev spectrum configuration method. On this basis, the effects of dimensionless pressure gradient G, background salt concentration MKCI, the pH value, and the viscosity ratio γ of the Powell-Eyring fluid and the Newtonian fluid, on velocity profile u and volume flow rate (average velocity)Q, were studied. The results demonstrate that, the homotopy perturbation method converges rapidly, requiring only an expansion up to the 1st-order solution to perfectly match the numerical solution. Meanwhile,MKCI,pH,γ and G have significant effects on the charge density and the electroosmotic flow velocity of the Powell-Eyring fluid in the nanochannel.
  • loading
  • [2]BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows inmicrofluidic systems[J].International Journal of Heat and Mass Transfer,2006,49(5/6): 815-824.
    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices:microfluidics toward a lab-on-a-chip[J].Annual Review of Fluid Mechanics,2004,36: 381-411.
    [3]LEVINE S, MARRIOTT J R, NEALE G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J].Journal of Colloid and Interface Science,1975,52(1): 136-149.
    [4]HSU J P, KAO C Y, TSENG S, et al. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions[J].Journal of Colloid and Interface Science,2002,248(1): 176-184.
    [5]JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through amicroannulus[J].Physics of Fluids,2010,22(4): 042001.
    [6]LIN X H, ZHANG C B, GU J, et al. Poisson-Fokker-Planck model for biomolecules translocation through nanopore driven by electroosmotic flow[J].Science China Physics, Mechanics & Astronomy,2014,57(11): 2104-2113.
    [7]李子瑞. 离子浓差极化效应及其在微纳流控分子富集系统中的应用进展[J]. 中国科学: 技术科学, 2018,48(11): 1151-1166. (LI Zirui. Ion concentration polarization and its application in molecular preconcentration in micro-nanofluidic systems[J].Scientia Sinica: Technologica,2018,48(11): 1151-1166. (in Chinese))
    [8]邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016,37(4): 363-372. (XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J].Applied Mathematics and Mechanics,2016,37(4): 363-372. (in Chinese))
    [9]许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019,40(4): 408-418. (XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J].Applied Mathematics and Mechanics,2019,40(4): 408-418. (in Chinese))
    [10]王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020,41(4): 396-405. (WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J].Applied Mathematics and Mechanics,2020,41(4): 396-405. (in Chinese))
    [11]TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J].Journal of Non-Newtonian Fluid Mechanics,2009,157(1/2): 133-137.
    [12]LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J].Physics of Fluids,2011,23(10): 102001.
    [13]TANG L, HAO Y, PENG L, et al. Ion current rectification properties of non-Newtonian fluids in conicalnanochannels[J].Physical Chemistry Chemical Physics,2024,26(4): 2895-2906.
    [14]姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动[J]. 物理学报, 2015,64(17): 222-227. (JIANG Yuting, QI Haitao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel[J].Acta Physica Sinica,2015,64(17): 222-227. (in Chinese))
    [15]郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023,44(10): 1213-1225. (ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J].Applied Mathematics and Mechanics,2023,44(10): 1213-1225. (in Chinese))
    [16]长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024,45(5): 622-636. (CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J].Applied Mathematics and Mechanics,2024,45(5): 622-636. (in Chinese))
    [17]YANG J, CHEN Y, DU C, et al. Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity[J].Chemical Engineering and Processing: Process Intensification,2023,186: 109339.
    [18]YADAV P K, ROSHAN M. Mathematical modeling of blood flow in an annulus porous region between two coaxial deformable tubes: an advancement to peristaltic endoscope[J].Chinese Journal of Physics,2024,88: 89-109.
    [19]POWELL R E, EYRING H. Mechanisms for the relaxation theory of viscosity[J].Nature,1944,154(3909): 427-428.
    [20]ISLAM S, SHAH A, ZHOU C Y, et al. Homotopy perturbation analysis of slider bearing with Powell-Eyring fluid[J].Zeitschrift Für Angewandte Mathematik und Physik,2009,60(6): 1178-1193.
    [21]HAYAT T, IQBAL Z, QASIM M, et al. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions[J]. International Journal of Heat and Mass Transfer,2012,55(7/8): 1817-1822.
    [22]PATIL P M, GOUDAR B. Impact of impulsive motion on the Eyring-Powell nanofluid flow across a rotating sphere in MHD convective regime: entropy analysis[J].Journal of Magnetism and Magnetic Materials,2023,571: 170590.
    [23]AKBAR Y, HUANG S, ASHRAF M U, et al. Electrothermal analysis for reactive Powell Eyring nanofluid flow regulated by peristaltic pumping with mass transfer[J].Case Studies in Thermal Engineering,2023,44: 102828.
    [24]GOSWAMI P, MONDAL P K, DUTTA S, et al. Electroosmosis of Powell-Eyring fluids under interfacial slip[J].Electrophoresis,2015,36(5): 703-711.
    [25]LI F Q, JIAN Y J, XIE Z Y, et al. Electromagnetohydrodynamic flow of Powell-Eyring fluids in a narrow confinement[J].Journal of Mechanics,2017,33(2): 225-233.
    [26]YEH L H, XUE S, JOO S W, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J].The Journal of Physical Chemistry C,2012,116(6): 4209-4216.
    [27]TSENG S, TAI Y H, HSU J P. Ionic current in a pH-regulated nanochannel filled with multiple ionic species[J].Microfluidics and Nanofluidics,2014,17(5): 933-941.
    [28]MEI L, YEH L H, QIAN S. Buffer effect on the ionic conductance in a pH-regulated nanochannel[J].Electrochemistry Communications,2015,51: 129-132.
    [29]SADEGHI M, SAIDI M H, SADEGHI A. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel[J].Physics of Fluids,2017,29(6): 062002.
    [30]HSU J P, CHU Y Y, LIN C Y, et al. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid[J].Journal of Colloid and Interface Science,2019,537: 358-365.
    [31]BARMAN B, KUMAR D, GOPMANDAL P P, et al. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid[J].Soft Matter,2020,16(29): 6862-6874.
    [32]YANG M, BUREN M, CHANG L, et al. Time periodic electroosmotic flow in a pH-regulated parallel-plate nano- channel[J].Physica Scripta,2022,97(3): 030003.
    [33]BAG N. Impact of pH-regulated wall charge on the modulation of electroosmotic flow and transport of ionic species through slit nanochannels[J].Colloid Journal,2023,85(3): 315-325.
    [34]CHUANG P Y, HSU J P. Electroosmotic flow, ionic current rectification, and selectivity of a conical nanopore modified with a pH-regulated polyelectrolyte layer: influence of functional groups profile[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,676: 132240.
    [35]〖JP3〗PENG L, ZHANG Z, TANG L, et al. Electrokinetic ion transport of viscoelastic fluids in a pH-regulated nanochannel[J].Surfaces and Interfaces,2024,46: 103957.
    [36]MEHTA S K, GHOSH A, MONDAL P K, et al. Electroosmosis of viscoelastic fluids in pH-sensitive hydrophobic microchannels: effect of surface charge-dependent slip length[J].Physics of Fluids,2024,36(2): 023101.
    [37]HE J H. Homotopy perturbation method: a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135(1): 73-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return