Citation: | QIN Xuan, SU Lijun, WAN Xiuwei, TAO Ze, SUN Xuechao, LU Tianjian. A Review of Coupled Thermo-Mechanical Behaviors of Brain Tissue[J]. Applied Mathematics and Mechanics, 2024, 45(6): 670-690. doi: 10.21656/1000-0887.450143 |
The brain is the highest nerve center regulating physiological behaviors and functions. Brain tissue is a saturated porous material composed mainly of solid phase and liquid phase. Interactions between the solid phase, the liquid phase and the physiological environment (temperature in particular) are manifested in the coupled thermo-mechanical behaviors of brain tissue, and affected by internal temperature, seepage and stress fields. Characterization of the coupled thermo-mechanical behaviors of brain tissue is the key to understanding brain function and disease pathology. Firstly, the thermal and mechanical properties of brain tissue measured via different experimental methods were introduced, with a particular focus placed upon the effects of the strain rate and the temperature. Theoretical and numerical models describing the coupled thermo-mechanical behaviors of brain tissues were then summarized, including mechanical models, heat transfer models and coupled thermo-mechanical models. Finally, this important multidisciplinary field was summarized and prospected.
[1] |
BUDDAY S, OVAERT T C, HOLZAPFEL G A, et al. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue[J]. Archives of Computational Methods in Engineering, 2019, 27(4): 1187-1230.
|
[2] |
GORIELY A, GEERS M G D, HOLZAPFEL G A, et al. Mechanics of the brain: perspectives, challenges, and opportunities[J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(5): 931-965. doi: 10.1007/s10237-015-0662-4
|
[3] |
PROCÈS A, LUCIANO M, KALUKULA Y, et al. Multiscale mechanobiology in brain physiology and diseases[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 823857. doi: 10.3389/fcell.2022.823857
|
[4] |
SQUIRE L R, BERG D, BLOOM F E, et al. Fundamental Neuroscience[M]. San Diego: Academic Press, 2013.
|
[5] |
LEI Y, HAN H, YUAN F, et al. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications[J]. Progress in Neurobiology, 2017, 157: 230-246. doi: 10.1016/j.pneurobio.2015.12.007
|
[6] |
STUART G, SPRUSTON N, HÄUSSER M. Dendrites[M]. New York: Oxford University Press, 2007.
|
[7] |
SYKOVÁ E, NICHOLSON C. Diffusion in brain extracellular space[J]. Physiological Reviews, 2008, 88(4): 1277-1340. doi: 10.1152/physrev.00027.2007
|
[8] |
KYRIACOU S K, MOHAMED A, MILLER K, et al. Brain mechanics for neurosurgery: modeling issues[J]. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 151-164. doi: 10.1007/s10237-002-0013-0
|
[9] |
BHARAT S, TECHAVIPOO U, KISS M Z, et al. Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation[J]. Ultrasound in Medicine & Biology, 2005, 31(3): 415-422.
|
[10] |
MOHAMMADI A, BIANCHI L, KORGANBAYEV S, et al. Thermomechanical modeling of laser ablation therapy of tumors: sensitivity analysis and optimization of influential variables[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 302-313. doi: 10.1109/TBME.2021.3092889
|
[11] |
SINGH S, MELNIK R. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects[J]. Physics in Medicine & Biology, 2019, 64(24): 245008.
|
[12] |
XU F, LU T J. Introduction to Skin Biothermomechanics and Thermal Pain[M]. New York: Springer, 2011.
|
[13] |
卢天健, 林敏, 徐峰. 牙齿的热-力-电生理耦合行为[M]. 北京: 科学出版社, 2015.
LU Tianjian, LIN Min, XU Feng. Thermo-Mechano-Electrophysiological Coupling Behaviors of Teeth[M]. Beijing: Science Press, 2015. (in Chinese)
|
[14] |
TIAN J, HUANG G, LIN M, et al. A mechanoelectrical coupling model of neurons under stretching[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93: 213-221. doi: 10.1016/j.jmbbm.2019.02.007
|
[15] |
OCHOA D A, MIRANDA B M, CONGER B C, et al. Lunar eva thermal environment challenges[J]. SAE Transactions, 2006, 115: 492-505.
|
[16] |
ZU EULENBURG P, VAN OMBERGEN A, TOMILOVSKAYA E S, et al. Reply to Ludwig et al: a potential mechanism for intracranial cerebrospinal fluid accumulation during long-duration spaceflight[J]. Biological Sciences, 2019, 116(41): 20265-20266.
|
[17] |
VAN OMBERGEN A, JILLINGS S, JEURISSEN B, et al. Brain ventricular volume changes induced by long-duration spaceflight[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10531-10536.
|
[18] |
MACMANUS D B, MURPHY J G, GILCHRIST M D. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87: 256-266. doi: 10.1016/j.jmbbm.2018.07.025
|
[19] |
MOHAJER N, WINTER A, GREGORY T M, et al. Experimental validation of a high-G centrifuge system using an advanced wireless human dummy[C]//Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Prague, Czech Republic, 2022.
|
[20] |
WANG L, YIN H, DI Y, et al. Human local and total heat losses in different temperature[J]. Physiology & Behavior, 2016, 157: 270-276.
|
[21] |
ECKER J R, GESCHWIND D H, KRIEGSTEIN A R, et al. The barin initiative cell census consortium: lessons learned toward generating a comprehensive brain cell atlas[J]. Neuron, 2017, 96(3): 542-557. doi: 10.1016/j.neuron.2017.10.007
|
[22] |
CHAGOVETZ A A, JENSEN R L, RECHT L, et al. Preliminary use of differential scanning calorimetry of cerebrospinal fluid for the diagnosis of glioblastoma multiforme[J]. Journal of Neuro-Oncology, 2011, 105(3): 499-506. doi: 10.1007/s11060-011-0630-5
|
[23] |
BERTALAN G, BOEHM-STURM P, SCHREYER S, et al. The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain[J]. Acta Biomater, 2019, 96: 412-420. doi: 10.1016/j.actbio.2019.06.034
|
[24] |
BARNES J M, PRZYBYLA L, WEAVER V M, et al. Tissue mechanics regulate brain development, homeostasis and disease[J]. Journal of Cell Science, 2017, 130(1): 71-82. doi: 10.1242/jcs.191742
|
[25] |
MOMIN A, BAHRAMPOUR S, MIN H K, et al. Channeling force in the brain: mechanosensitive ion channels choreograph mechanics and malignancies[J]. Trends in Pharmacological Sciences, 2021, 42(5): 367-384. doi: 10.1016/j.tips.2021.02.006
|
[26] |
MALEK A M, IZUMO S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress[J]. Journal of Cell Science, 1996, 109(4): 713-726. doi: 10.1242/jcs.109.4.713
|
[27] |
TYLER W J. The mechanobiology of brain function[J]. Nature Reviews Neuroscience, 2012, 13(12): 867-878. doi: 10.1038/nrn3383
|
[28] |
KOSER D E, THOMPSON A J, FOSTER S K, et al. Mechanosensing is critical for axon growth in the developing brain[J]. Nature Neuroscience, 2016, 19: 1592-1598. doi: 10.1038/nn.4394
|
[29] |
RICCOBELLI D, BEVILACQUA G. Surface tension controls the onset of gyrification in brain organoids[J]. Journal of the Mechanics and Physics of Solids, 2020, 134: 103745. doi: 10.1016/j.jmps.2019.103745
|
[30] |
NGO M T, HARLEY B A C. Progress in mimicking brain microenvironments to understand and treat neurological disorders[J]. APL Bioengineering, 2021, 5(2): 020902. doi: 10.1063/5.0043338
|
[31] |
RASHID B, DESTRADE M, GILCHRIST M D. Inhomogeneous deformation of brain tissue during tension tests[J]. Computational Materials Science, 2012, 64: 295-300. doi: 10.1016/j.commatsci.2012.05.030
|
[32] |
RASHID B, DESTRADE M, GILCHRIST M D. Mechanical characterization of brain tissue in tension at dynamic strain rates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 33: 43-54. doi: 10.1016/j.jmbbm.2012.07.015
|
[33] |
MILLER K, CHINZEI K. Mechanical properties of brain tissue in tension[J]. Journal of Biomechanics, 2002, 35(4): 483-490. doi: 10.1016/S0021-9290(01)00234-2
|
[34] |
HASLACH H W, LEAHY L N, RILEY P, et al. Solid-extracellular fluid interaction and damage in the mechanical response of rat brain tissue under confined compression[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 138-150. doi: 10.1016/j.jmbbm.2013.08.027
|
[35] |
EL SAYED T, MOTA A, FRATERNALI F, et al. A variational constitutive model for soft biological tissues[J]. Journal of Biomechanics, 2008, 41(7): 1458-1466. doi: 10.1016/j.jbiomech.2008.02.023
|
[36] |
YUE H, DENG J, ZHOU J, et al. Biomechanics of porcine brain tissue under finite compression[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(1): 1750001. doi: 10.1142/S0219519417500014
|
[37] |
MILLER K, CHINZEI K. Constitutive modelling of brain tissue: experiment and theory[J]. Journal of Biomechanics, 1997, 30(11): 1115-1121.
|
[38] |
DONNELLY B R, MEDIGE J. Shear properties of human brain tissue[J]. Journal of Biomechanical Engineering, 1997, 119(4): 423-432. doi: 10.1115/1.2798289
|
[39] |
ARBOGAST K B, MARGULIES S S. Material characterization of the brainstem from oscillatory shear tests[J]. Journal of Biomechanics, 1998, 31(9): 801-807. doi: 10.1016/S0021-9290(98)00068-2
|
[40] |
DARVISH K K, CRANDALL J R. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue[J]. Medical Engineering & Physics, 2001, 23(9): 633-645.
|
[41] |
PAN C, CHEN F, ZHOU J, et al. Multiregional viscoelastic characterization of the corona radiata in the sagittal plane of the porcine brain[J]. Medical & Biological Engineering & Computing, 2018, 57(3): 615-622. doi: 10.3969/j.issn.1671-7171.2018.03.071
|
[42] |
BUDDAY S, NAY R, DE ROOIJ R, et al. Mechanical properties of gray and white matter brain tissue by indentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 318-330. doi: 10.1016/j.jmbbm.2015.02.024
|
[43] |
GEFEN A, GEFEN N, ZHU Q, et al. Age-dependent changes in material properties of the brain and braincase of the rat[J]. Journal of Neurotrauma, 2003, 20(11): 1163-1177. doi: 10.1089/089771503770802853
|
[44] |
BRADFIELD C, VOO L, DREWRY D, et al. Dynamic strain fields of the mouse brain during rotation[J]. Biomech Model Mechanobiol, 2024, 23(2): 397-412. doi: 10.1007/s10237-023-01781-8
|
[45] |
MENARD K P, MENARD N. Dynamic Mechanical Analysis[M]. CRC Press, 2020.
|
[46] |
PENG Y Y, DUSSAN D D, NARAIN R. Polymer Science and Nanotechnology[M]. Elsevier, 2020.
|
[47] |
DEWALL R J. Ultrasound elastography: principles, techniques, and clinical applications[J]. Critical Reviews in Biomedical Engineering, 2013, 41(1): 1-19. doi: 10.1615/CritRevBiomedEng.2013006991
|
[48] |
GENNISSON J L, DEFFIEUX T, FINK M, et al. Ultrasound elastography: principles and techniques[J]. Diagnostic and Interventional Imaging, 2013, 94(5): 487-495. doi: 10.1016/j.diii.2013.01.022
|
[49] |
OZTURK A, GRAJO J R, DHYANI M, et al. Principles of ultrasound elastography[J]. Abdom Radiol (NY), 2018, 43(4): 773-785. doi: 10.1007/s00261-018-1475-6
|
[50] |
KRUSE S A, ROSE G H, GLASER K J, et al. Magnetic resonance elastography of the brain[J]. Neuroimage, 2008, 39(1): 231-237. doi: 10.1016/j.neuroimage.2007.08.030
|
[51] |
WEICKENMEIER J, KURT M, OZKAYA E, et al. Magnetic resonance elastography of the brain: a comparison between pigs and humans[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 702-710. doi: 10.1016/j.jmbbm.2017.08.029
|
[52] |
STREITBERGER K J, SACK I, KREFTING D, et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis[J]. PLoS One, 2012, 7(1): e29888. doi: 10.1371/journal.pone.0029888
|
[53] |
HAMHABER U, KLATT D, PAPAZOGLOU S, et al. In vivo magnetic resonance elastography of human brain at 7 t and 1.5 t[J]. Journal of Magnetic Resonance Imaging, 2010, 32(3): 577-583. doi: 10.1002/jmri.22294
|
[54] |
HRAPKO M, VAN DOMMELEN J A, PETERS G W, et al. The influence of test conditions on characterization of the mechanical properties of brain tissue[J]. Journal of Biomechanical Engineering, 2008, 130(3): 031003. doi: 10.1115/1.2907746
|
[55] |
VELARDI F, FRATERNALI F, ANGELILLO M. Anisotropic constitutive equations and experimental tensile behavior of brain tissue[J]. Biomechanics and Modeling in Mechanobiology, 2005, 5(1): 53-61.
|
[56] |
ZHU Z, JIANG C, JIANG H. A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility[J]. Acta Mechanica, 2019, 230(6): 2125-2135. doi: 10.1007/s00707-019-02383-1
|
[57] |
MILLER K. Method of testing very soft biological tissues in compression[J]. Journal of Biomechanics, 2005, 38(1): 153-158. doi: 10.1016/j.jbiomech.2004.03.004
|
[58] |
ESKANDARI F, SHAFIEIAN M, AGHDAM M M, et al. Tension strain-softening and compression strain-stiffening behavior of brain white matter[J]. Annals of Biomedical Engineering, 2021, 49(1): 276-286. doi: 10.1007/s10439-020-02541-w
|
[59] |
RASHID B, DESTRADE M, GILCHRIST M D. Influence of preservation temperature on the measured mechanical properties of brain tissue[J]. Journal of Biomechanics, 2013, 46(7): 1276-1281. doi: 10.1016/j.jbiomech.2013.02.014
|
[60] |
ZHANG J, YOGANANDAN N, PINTAR F A, et al. Effects of tissue preservation temperature on high strain-rate material properties of brain[J]. Journal of Biomechanics, 2011, 44(3): 391-396. doi: 10.1016/j.jbiomech.2010.10.024
|
[61] |
VAN DOMMELEN J A W, VAN DER SANDE T P J, HRAPKO M, et al. Mechanical properties of brain tissue by indentation: interregional variation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(2): 158-166. doi: 10.1016/j.jmbbm.2009.09.001
|
[62] |
PRANGE M T, MARGULIES S S. Regional, directional, and age-dependent properties of the brain undergoing large deformation[J]. Journal of Biomechanical Engineering, 2002, 124(2): 244-252. doi: 10.1115/1.1449907
|
[63] |
MACMANUS D B, PIERRAT B, MURPHY J G, et al. Region and species dependent mechanical properties of adolescent and young adult brain tissue[J]. Scientific Reports, 2017, 7(1): 13729. doi: 10.1038/s41598-017-13727-z
|
[64] |
ELKIN B S, ILANKOVAN A, MORRISON B. Age-dependent regional mechanical properties of the rat hippocampus and cortex[J]. Journal of Biomechanical Engineering, 2010, 132(1): 011010. doi: 10.1115/1.4000164
|
[65] |
RASHID B, DESTRADE M, GILCHRIST M D. Temperature effects on brain tissue in compression[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14: 113-118. doi: 10.1016/j.jmbbm.2012.04.005
|
[66] |
GARO A, HRAPKO M M, DOMMELEN V, et al. Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation[J]. Biorheology, 2007, 44(1): 51-58.
|
[67] |
MACMANUS D B, PIERRAT B, MURPHY J G, et al. Dynamic mechanical properties of murine brain tissue using micro-indentation[J]. Journal of Biomechanics, 2015, 48(12): 3213-3218. doi: 10.1016/j.jbiomech.2015.06.028
|
[68] |
QIAN L, ZHAO H, GUO Y, et al. Influence of strain rate on indentation response of porcine brain[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82: 210-217. doi: 10.1016/j.jmbbm.2018.03.031
|
[69] |
RASHID B, DESTRADE M, GILCHRIST M D. Mechanical characterization of brain tissue in tension at dynamic strain rates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 33: 43-54. doi: 10.1016/j.jmbbm.2012.07.015
|
[70] |
MILLER K, CHINZEI K, ORSSENGO G, et al. Mechanical properties of brain tissue in-vivo: experiment and computer simulation[J]. Journal of Biomechanics, 2000, 33(11): 1369-1376. doi: 10.1016/S0021-9290(00)00120-2
|
[71] |
SU L, QI B, YIN J, et al. Compressive response of white matter in the brain at low strain rates[J]. International Journal of Mechanical Sciences, 2024, 277: 109415. doi: 10.1016/j.ijmecsci.2024.109415
|
[72] |
CHENG S, BILSTON L E. Unconfined compression of white matter[J]. Journal of Biomechanics, 2007, 40(1): 117-124. doi: 10.1016/j.jbiomech.2005.11.004
|
[73] |
CHRIST A F, FRANZE K, GAUTIER H, et al. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy[J]. Journal of Biomechanics, 2010, 43(15): 2986-2992. doi: 10.1016/j.jbiomech.2010.07.002
|
[74] |
KASTER T, SACK I, SAMANI A. Measurement of the hyperelastic properties of ex vivo brain tissue slices[J]. Journal of Biomechanics, 2011, 44(6): 1158-1163. doi: 10.1016/j.jbiomech.2011.01.019
|
[75] |
GUILLAUME A, OSMONT D, GAFFIE D, et al. Effects of perfusion on the mechanical behavior of the brain-exposed to hypergravity[J]. Journal of Biomechanics, 1997, 30(4): 383-389. doi: 10.1016/S0021-9290(96)00153-4
|
[76] |
FINAN J D, ELKIN B S, PEARSON E M, et al. Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age[J]. Annals of Biomedical Engineering, 2011, 40(1): 70-78.
|
[77] |
BUDDAY S, SOMMER G, BIRKL C, et al. Mechanical characterization of human brain tissue[J]. Acta Biomaterialia, 2017, 48: 319-340. doi: 10.1016/j.actbio.2016.10.036
|
[78] |
LIU Y L, LI G Y, HE P, et al. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65: 652-656. doi: 10.1016/j.jmbbm.2016.09.026
|
[79] |
CHATELIN S, VAPPOU J, ROTH S, et al. Towards child versus adult brain mechanical properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6: 166-173. doi: 10.1016/j.jmbbm.2011.09.013
|
[80] |
FORTE A E, GENTLEMAN S M, DINI D. On the characterization of the heterogeneous mechanical response of human brain tissue[J]. Biomechanics and Modeling in Mechanobiology, 2016, 16(3): 907-920.
|
[81] |
FRANCESCHINI G, BIGONI D, REGITNIG P, et al. Brain tissue deforms similarly to filled elastomers and follows consolidation theory[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(12): 2592-2620. doi: 10.1016/j.jmps.2006.05.004
|
[82] |
ESKANDARI F, RAHMANI Z, SHAFIEIAN M. The effect of large deformation on Poisson's ratio of brain white matter: an experimental study[J]. Proceedings of the Institution of Mechanical Engineers (Part H): Journal of Engineering in Medicine, 2021, 235(4): 401-407. doi: 10.1177/0954411920984027
|
[83] |
WANG J, ZHANG Y, JIANG Z, et al. Mechanical behavior and constitutive equations of porcine brain tissue considering both solution environment effect and strain rate effect[J]. Mechanics of Advanced Materials and Structures, 2024, 31(10): 2115-2129. doi: 10.1080/15376494.2022.2150917
|
[84] |
KIYATKIN E A. Brain temperature homeostasis: physiological fluctuations and pathological shifts[J]. Frontiers in Bioscience: a Journal and Virtual Library, 2010, 15: 73. doi: 10.2741/3608
|
[85] |
WANG H, WANG B, NORMOYLE K P, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists[J]. Frontiers in Neuroscience, 2014, 8: 307.
|
[86] |
LOPRESTO V, ARGENTIERI A, PINTO R, et al. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures[J]. Physics in Medicine and Biology, 2019, 64(10): 105016. doi: 10.1088/1361-6560/ab1663
|
[87] |
SILVA N P, BOTTIGLIERI A, CONCEIÇÃO R C, et al. Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies[J]. Sensors, 2020, 20(10): 3004. doi: 10.3390/s20103004
|
[88] |
MOHAMMADI A, BIANCHI L, ASADI S, et al. Measurement of ex vivo liver, brain and pancreas thermal properties as function of temperature[J]. Sensors, 2021, 21(12): 4236. doi: 10.3390/s21124236
|
[89] |
BHATTACHARYA A, MAHAJAN R L. Temperature dependence of thermal conductivity of biological tissues[J]. Physiological Measurement, 2003, 24(3): 769-783. doi: 10.1088/0967-3334/24/3/312
|
[90] |
CHOI J, MORRISSEY M, BISCHOF J C. Thermal processing of biological tissue at high temperatures: impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25~80 ℃[J]. Journal of Heat Transfer, 2013, 135(6): 061302. doi: 10.1115/1.4023570
|
[91] |
HAYES L J, VALVANO J W. Steady-state analysis of self-heated thermistors using finite elements[J]. Journal of Biomechanical Engineering, 1985, 107(1): 77-80. doi: 10.1115/1.3138524
|
[92] |
VALVANO J W, COCHRAN J R, DILLER K R. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors[J]. International Journal of Thermophysics, 1985, 6(3): 301-311. doi: 10.1007/BF00522151
|
[93] |
VALVANO J W, ALLEN J T, BOWMAN H F. The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue[J]. Journal of Biomechanical Engineering, 1984, 106(3): 192-197. doi: 10.1115/1.3138482
|
[94] |
CLAS S D, DALTON C R, HANCOCK B C. Differential scanning calorimetry: applications in drug development[J]. Pharmaceutical Science & Technology Today, 1999, 2(8): 311-320.
|
[95] |
BIANCHI L, CAVARZAN F, CIAMPITTI L, et al. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review[J]. International Journal of Hyperthermia, 2022, 39(1): 297-340. doi: 10.1080/02656736.2022.2028908
|
[96] |
GILL P, MOGHADAM T T, RANJBAR B. Differential scanning calorimetry techniques: applications in biology and nanoscience[J]. Journal of Biomolecular Techniques, 2010, 21(4): 167-193.
|
[97] |
COOPER T E, TREZEK G J. A probe technique for determining the thermal conductivity of tissue[J]. Journal of Heat Transfer, 1972, 94(2): 133-140. doi: 10.1115/1.3449883
|
[98] |
SANO F, WASHIO T, MATSUMAE M. Measurements of specific heat capacities required to build computer simulation models for laser thermotherapy of brain lesions[J]. The Tokai Journal of Experimental and Clinical Medicine, 2019, 44(4): 80-84.
|
[99] |
WEBB A I, WEAVER B M. The density of equine tissue at 37 ℃[J]. Research in Veterinary Science, 1979, 26(1): 71-75. doi: 10.1016/S0034-5288(20)30944-9
|
[100] |
MCINTOSH R L, ANDERSON V. A comprehensive tissue properties database provided for the thermal assessment of a human at rest[J]. Biophysical Reviews and Letters, 2011, 5(3): 129-151.
|
[101] |
XU X, TIKUISIS P, GIESBRECHT G. A mathematical model for human brain cooling during cold-water near-drowning[J]. Journal of Applied Physiology (1985), 1999, 86(1): 265-272. doi: 10.1152/jappl.1999.86.1.265
|
[102] |
DAGRO A M, LI H, DILEONARDI A M, et al. Nonlinearity of the coefficient of thermal expansion in brain tissue[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123: 104779. doi: 10.1016/j.jmbbm.2021.104779
|
[103] |
MENDEZ J, KEYS A, ANDERSON J T, et al. Density of fat and bone mineral of the mammalian body[J]. Metabolism-Clinical and Experimental, 1960, 9(5): 472-477.
|
[104] |
SALCMAN M, MORIYAMA E, ELSNER H J, et al. Cerebral blood flow and the thermal properties of the brain: a preliminary analysis[J]. Journal of Neurosurgery, 1989, 70(4): 592-598. doi: 10.3171/jns.1989.70.4.0592
|
[105] |
JIANG Q, CHOPP M, ZHANG Z G, et al. The effect of hypothermia on transient focal ischemia in rat brain evaluated by diffusion- and perfusion-weighted NMR imaging[J]. Journal of Cerebral Blood Flow and Metabolism, 1994, 14(5): 732-741. doi: 10.1038/jcbfm.1994.94
|
[106] |
BIRG T, ORTOLANO F, WIEGERS E J A, et al. Brain temperature influences intracranial pressure and cerebral perfusion pressure after traumatic brain injury: a center TBI study[J]. Neurocrit Care, 2021, 35(3): 651-661. doi: 10.1007/s12028-021-01294-1
|
[107] |
ROSSI S, ZANIER E R, MAURI I, et al. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage[J]. Journal of Neurol Neurosurg Psychiatry, 2001, 71(4): 448-454. doi: 10.1136/jnnp.71.4.448
|
[108] |
WEX C, ARNDT S, BRANDSTÄDTER K, et al. Biomechanical characterization of material properties of porcine liver after thermal treatment[J]. Soft Materials, 2014, 12(4): 411-419. doi: 10.1080/1539445X.2014.936559
|
[109] |
GUAN F J, ZHANG G J, JIA X H, et al. Study on the effect of sample temperature on the uniaxial compressive mechanical properties of the brain tissue[J]. Applied Bionics and Biomechanics, 2021, 2021: 9986395.
|
[110] |
SU L, WANG M, YIN J, et al. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale[J]. Acta Biomaterialia, 2023, 155: 423-435. doi: 10.1016/j.actbio.2022.11.009
|
[111] |
KIM B, LEE S B, LEE J, et al. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5): 759-764. doi: 10.1007/s12541-012-0099-y
|
[112] |
SACCOMANDI G, VERGORI L. Generalised Mooney-Rivlin models for brain tissue: a theoretical perspective[J]. International Journal of Non-Linear Mechanics, 2019, 109: 9-14. doi: 10.1016/j.ijnonlinmec.2018.09.008
|
[113] |
PAMIDI M R, ADVANI S H. Nonlinear constitutive relations for human brain tissue[J]. Transactions of the ASME, 1978, 100(1): 44-48.
|
[114] |
OGDEN R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[J]. A Mathematical and Physical Sciences, 1972, 326(1567): 565-584.
|
[115] |
WILLIAM O R. Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids[J]. Proceedings of the Royal Society of London, 1972, 328(1575): 567-583.
|
[116] |
MIHAI L A, BUDDAY S, HOLZAPFEL G A, et al. A family of hyperelastic models for human brain tissue[J]. Journal of the Mechanics and Physics of Solids, 2017, 106: 60-79. doi: 10.1016/j.jmps.2017.05.015
|
[117] |
PREVOST T P, BALAKRISHNAN A, SURESH S, et al. Biomechanics of brain tissue[J]. Acta Biomaterialia, 2011, 7(1): 83-95. doi: 10.1016/j.actbio.2010.06.035
|
[118] |
FALLENSTEIN G T, HULCE V D, MELVIN J W. Dynamic mechanical properties of human brain tissue[J]. Journal of Biomechanics, 1969, 2(3): 217-226. doi: 10.1016/0021-9290(69)90079-7
|
[119] |
CALHOUN M A, BENTIL S A, ELLIOTT E, et al. Beyond linear elastic modulus: viscoelastic models for brain and brain mimetic hydrogels[J]. ACS Biomaterials Science & Engineering, 2019, 5(8): 3964-3973.
|
[120] |
HOSSEINI-FARID M, RAMZANPOUR M, ZIEJEWSKI M, et al. A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters[J]. International Journal of Non-Linear Mechanics, 2019, 116: 147-154. doi: 10.1016/j.ijnonlinmec.2019.06.008
|
[121] |
WHITTALL K P, MACKAY A L, GRAEB D A, et al. In vivo measurement of T2 distributions and water contents in normal human brain[J]. Magnetic Resonance in Medicine, 1997, 37(1): 34-43. doi: 10.1002/mrm.1910370107
|
[122] |
KACZMAREK M, SUBRAMANIAM R P, NEFF S R. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry[J]. Bulletin of Mathematical Biology, 1997, 59(2): 295-323. doi: 10.1007/BF02462005
|
[123] |
PEÑA A, BOLTON M D, WHITEHOUSE H, et al. Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis[J]. Neurosurgery, 1999, 45(1): 107-116.
|
[124] |
MOW V C, KUEI S C, LAI W M, et al. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments[J]. Journal of Biomechanical Engineering, 1980, 102(1): 73-84. doi: 10.1115/1.3138202
|
[125] |
ANGELI S, STYLIANOPOULOS T. Biphasic modeling of brain tumor biomechanics and response to radiation treatment[J]. Journal of Biomechanics, 2016, 49(9): 1524-1531. doi: 10.1016/j.jbiomech.2016.03.029
|
[126] |
WANG R, SARNTINORANONT M. Biphasic analysis of rat brain slices under creep indentation shows nonlinear tension-compression behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89: 1-8. doi: 10.1016/j.jmbbm.2018.08.043
|
[127] |
MILLER K, CHINZEI K. Modelling of brain tissue mechanical properties: bi-phasic versus single-phase approach[C]//Proceedings of the 3rd International Symposium on Computer Methods in Biomechanics and Biomedical Engineering. 1997.
|
[128] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
|
[129] |
LI X, VON HOLST H, KLEIVEN S. Influence of gravity for optimal head positions in the treatment of head injury patients[J]. Acta Neurochirurgica, 2011, 153(10): 2057-2064. doi: 10.1007/s00701-011-1078-2
|
[130] |
JU G, CAI M, LI J, et al. Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation[J]. Mathematics and Computers in Simulation, 2020, 177: 385-403. doi: 10.1016/j.matcom.2020.04.027
|
[131] |
CHEN X, TI F, LI M, et al. Theory of fluid saturated porous media with surface effects[J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104392. doi: 10.1016/j.jmps.2021.104392
|
[132] |
TI F, CHEN X, LI M, et al. Cylindrical compressible liquid inclusion with surface effects[J]. Journal of the Mechanics and Physics of Solids, 2022, 161: 104813. doi: 10.1016/j.jmps.2022.104813
|
[133] |
CHATELIN S, CONSTANTINESCO A, WILLINGER R. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations[J]. Biorheology, 2010, 47(5/6): 255-276.
|
[134] |
MAK A F. The apparent viscoelastic behavior of articular cartilage-the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows[J]. Journal of Biomechanical Engineering, 1986, 108(2): 123-130. doi: 10.1115/1.3138591
|
[135] |
BLOOM F E. Fundamental Neuroscience[M]. Academic Press, 2014: 3-13.
|
[136] |
ROSSMANN C, HAEMMERICH D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures[J]. Critical Reviews in Biomedical Engineering, 2014, 42(6): 467-492. doi: 10.1615/CritRevBiomedEng.2015012486
|
[137] |
PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1998, 85(1): 5-34. doi: 10.1152/jappl.1998.85.1.5
|
[138] |
WEINBAUM S, XU L X, ZHU L, et al. A new fundamental bioheat equation for muscle tissue, part Ⅰ: blood perfusion term[J]. Journal of Biomechanical Engineering, 1997, 119(3): 278-288. doi: 10.1115/1.2796092
|
[139] |
WEINBAUM S, JIJI L M. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature[J]. Journal of Biomechanical Engineering, 1985, 107(2): 131-139. doi: 10.1115/1.3138533
|
[140] |
BAISH J W. Formulation of a statistical model of heat transfer in perfused tissue[J]. Journal of Biomechanical Engineering, 1994, 116(4): 521-527. doi: 10.1115/1.2895804
|
[141] |
MA W, LIU W, LI M. Analytical heat transfer model for targeted brain hypothermia[J]. International Journal of Thermal Sciences, 2016, 100: 66-74. doi: 10.1016/j.ijthermalsci.2015.09.014
|
[142] |
SULEMAN M, RIAZ S. Computational modeling of poroelastic brain tumor therapy during heat transfer carrying temperature-dependent blood perfusion[J]. Medical Engineering & Physics, 2022, 103: 103792.
|
[143] |
ELWASSIF M M, KONG Q, VAZQUEZ M, et al. Bio-heat transfer model of deep brain stimulation-induced temperature changes[J]. Journal of Neural Engineering, 2006, 3(4): 306. doi: 10.1088/1741-2560/3/4/008
|
[144] |
XU F, SEFFEN K A, LU T J. Non-Fourier analysis of skin biothermomechanics[J]. International Journal of Heat and Mass Transfer, 2008, 51(9): 2237-2259.
|
[145] |
LI X, ZHONG Y, JAZAR R, et al. Thermal-mechanical deformation modelling of soft tissues for thermal ablation[J]. Bio-Medical Materials and Engineering, 2014, 24(6): 2299-2310. doi: 10.3233/BME-141043
|
[146] |
BAI B, ZHOU R, CAI G, et al. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
|
[147] |
CUI W, POTTS D M, ZDRAVKOVIĆ L, et al. An alternative coupled thermo-hydro-mechanical finite element formulation for fully saturated soils[J]. Computers and Geotechnics, 2018, 94: 22-30. doi: 10.1016/j.compgeo.2017.08.011
|
[148] |
HASHEMI A, SUTMAN M, MEDERO G M. A review on the thermo-hydro-mechanical response of soil-structure interface for energy geostructures applications[J]. Geomechanics for Energy and the Environment, 2023, 33: 100439. doi: 10.1016/j.gete.2023.100439
|
[149] |
HASHEMI A, SUTMAN M. Thermo-hydro-mechanical behaviour of partially saturated fine-grained soils in the context of energy geostructures[J]. Geomechanical for Energy and the Environment, 2022, 33: 100439.
|
[150] |
SCARINGI G, LOCHE M. A thermo-hydro-mechanical approach to soil slope stability under climate change[J]. Geomorphology, 2022, 401: 108108. doi: 10.1016/j.geomorph.2022.108108
|
[151] |
WU W, LI X, CHARLIER R, et al. A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils[J]. Computers and Geotechnics, 2004, 31(2): 155-167. doi: 10.1016/j.compgeo.2004.02.004
|
[152] |
KEANGIN P, WESSAPAN T, RATTANADECHO P. Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna[J]. Applied Thermal Engineering, 2011, 31(16): 3243-3254. doi: 10.1016/j.applthermaleng.2011.06.005
|
[153] |
BENEVENTO M, ALPÁR A, GUNDACKER A, et al. A brainstem-hypothalamus neuronal circuit reduces feeding upon heat exposure[J]. Nature, 2024, 628: 826-834. doi: 10.1038/s41586-024-07232-3
|
[154] |
SHI L, MYERS K. A finite porous-viscoelastic model capturing mechanical behavior of human cervix under multi-step spherical indentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 143: 105875. doi: 10.1016/j.jmbbm.2023.105875
|