Volume 46 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
TIAN Yu, YANG Liu, YI Haihong. Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160
Citation: TIAN Yu, YANG Liu, YI Haihong. Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160

Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model

doi: 10.21656/1000-0887.450160
Funds:

The National Science Foundation of China(61663018;11961042)

  • Received Date: 2024-05-30
  • Rev Recd Date: 2024-06-27
  • Available Online: 2025-11-13
  • The inverse problem of simultaneously inverting 2 time-independent coefficients in the nonlinear phase-field model was investigated with given terminal measurement data. Unlike the usual parabolic equations, a nonlinear parabolic system of equations was studied. Based on the optimal control framework, the inverse problem was transformed into an optimization problem. The existence and necessary condition of the minimizer for the cost functional were established. The uniqueness and stability of the minimizer were deduced from the necessary condition.
  • loading
  • DENG Z C, YANG L, YU J N, et al. Identifying the diffusion coefficient by optimization from the final observation[J]. Applied Mathematics and Computation,2013,219(9): 4410-4422.
    [2]柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022,43(3): 341-35. (LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics,2022, 43(3): 341-35.(in Chinese))
    [3]YANG L, YU J N, LUO G W, et al. Reconstruction of a space and time dependent heat source from finite measurement data[J]. International Journal of Heat and Mass Transfer,2012,55(23/24): 6573-6581.
    [4]YANG F, FU C L. A simplified Tikhonov regularization method for determining the heat source[J]. Applied Mathematical Modelling,2010,34(11): 3286-3299.
    [5]刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.(LIU Jijun. Regularization Method of Ill-Posed Problems and Its Application[M]. Beijing: Science Press, 2005.(in Chinese))
    [6]TRIKI F. Coefficient identification in parabolic equations with final data[J]. Journal de Mathématiques Pures et Appliquées,2021,148: 342-359.
    [7]DENG Z C, YANG L. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation[J]. Journal of Computational and Applied Mathematics,2011,235(15): 4404-4417.
    [8]尤云祥, 缪国平. 刚性目标形状反演的一种非线性最优化方法[J]. 应用数学和力学, 2003,24(10): 1090-1100. (YOU Yunxiang, MIAO Guoping. Numerical method for the shape reconstruction of a hard target[J]. Applied Mathematics and Mechanics, 2003,24(10): 1090-1100.(in Chinese))
    [9]许瑶瑶, 杨柳. 非线性-积分抛物型方程零阶项的识别问题[J]. 兰州交通大学学报(自然科学版), 2022,41(6): 121-126. (XU Yaoyao, YANG Liu. Identification of zero-order term of nonlinear-integral parabolic equations[J]. Journal of Lanzhou Jiaotong University(Natural Science),2022,41(6): 121-126.(in Chinese))
    [10]蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016,51(4): 127-134. (CAI Cao. An inverse problem of identifying the coefficient in a Kolmogorov type equation[J]. Journal of Shandong University(Natural Science), 2016,51(4): 127-134.(in Chinese))
    [11]温鑫亮. 基于积分观测条件反演退化抛物型方程的辐射系数[J]. 重庆理工大学学报(自然科学), 2020,34(10): 238-246.(WEN Xinliang. Reconstructing the radiative coefficient for a degenerate parabolic equation based on integral observation condition[J]. Journal of Chongqing University of Technology (Natural Science),2020,34(10): 238-246. (in Chinese))
    [12]周焕林, 严俊, 余波, 等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018,39(2): 160-169.(ZHOU Huanlin,YAN Jun, YU Bo, et al. Identification of thermal diffusion coefficients for tran sient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics,2018,39(2) : 160-169.(in Chinese))
    [13]王凯阳, 吕少杰, 吴宏辉, 等. 金属凝固过程微观组织演化相场模型研究进展[J]. 矿物冶金与材料学报, 2023,30(11): 2095-2111.(WANG Kaiyang, L Shaojie, WU Honghui, el al. Recent research progress on the phase-field model of microstructural evolution during metal solidification[J]. International Journal of Minerals, Metallurgy and Materials,2023,30(11): 2095-2111. (in Chinese))
    [14]张更, 王巧, 沙立婷, 等. 相场模型及其在电化学储能材料中的应用[J]. 物理学报, 2020,69(22): 33-45.(ZHANG Geng, WANG Qiao, SHA Liting, et al. Phase-field model and its application in electrochemi-cal energy storage materials[J]. Acta Physica Sinica,2020,69(22): 33-45.(in Chinese))
    [15]HOFFMAN K H, JIANG L. Optimal control of a phase field model for solidification[J]. Numerical Functional Analysis and Optimization,1992,13(1/2): 11-27.
    [16]伍卓群, 尹景学, 王春朋. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunpeng. Introduction to Elliptic and Parabolic Equations[M]. Beijing: Science Press, 2003.(in Chinese))
    [17]姜礼尚, 陈亚浙, 刘西垣, 等. 数学物理方程讲义[M]. 3版. 北京: 高等教育出版社, 2007.(JIANG Lishang, CHEN Yazhe, LIU Xiyuan, et al. Lecture Notes on Mathematical and Physical Equations[M]. 3rd ed. Beijing: Higher Education Press, 2007. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (31) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return