Citation: | YUAN Xingyue, CUI Xiyong, RAN Ruisheng, ZHANG Shougui. A Self-Adaptive Alternating Direction Multiplier Method for Variational Inequality in 2 Domains[J]. Applied Mathematics and Mechanics, 2025, 46(7): 916-925. doi: 10.21656/1000-0887.450171 |
[1] |
TANG W J, HU H Y, SHEN L J. On the coupling of boundary integral and finite element methods for Signorini problems[J]. Journal of Computational Mathematics, 1998, 16 (6): 561-570.
|
[2] |
DOSTÁL Z, NETO F A M G G, SANTOS S A. Duality-based domain decomposition with natural coarse-space for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2000, 126 (1/2): 397-415.
|
[3] |
DOSTÁL Z, HORÁK D. Theoretically supported scalable FETI for numerical solution of variational inequalities[J]. SIAM Journal on Numerical Analysis, 2007, 45 (2): 500-513.
|
[4] |
PENG Z Y, LI D, ZHAO Y, et al. An accelerated subgradient extragradient algorithm for solving bilevel variational inequality problems involving non-Lipschitz operator[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 127 : 107549.
|
[5] |
PENG Z Y, PENG Z Y, CAI G, et al. Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces[J]. Applicable Analysis, 2024, 103 (10): 1769-1789.
|
[6] |
DOSTÁL Z, HORÁK D, STEFANICA D. A scalable FETI-DP algorithm for a semi-coercive variational inequality[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (8): 1369-1379.
|
[7] |
DOSTÁL Z, HORÁK D, STEFANICA D. A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface[J]. Journal of Computational and Applied Mathematics, 2009, 231 (2): 577-591.
|
[8] |
DOSTÁL Z, HORÁK D, KRUŽÍK J, et al. Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities[J]. Numerical Algorithms, 2022, 91 (2): 773-801.
|
[9] |
LEE J. Two domain decomposition methods for auxiliary linear problems of a multibody elliptic variational inequality[J]. SIAM Journal on Scientific Computing, 2013, 35 (3): A1350-A1375.
|
[10] |
BOUCHALA J, DOSTÁL Z, SADOWSKÁ M. Theoretically supported scalable BETI method for variational inequalities[J]. Computing, 2008, 82 (1): 53-75.
|
[11] |
IKRAM B, SAMIRA S. Generalized Schwarz algorithm for a class of variational inequalities[J]. Applied Mathematics & Information Sciences, 2021, 15 (1): 9-15.
|
[12] |
CHORFI A, KOKO J. Alternating direction method of multiplier for the unilateral contact problem with an automatic penalty parameter selection[J]. Applied Mathematical Modelling, 2020, 78 : 706-723.
|
[13] |
KOKO J. Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem[J]. Applied Mathematics Letters, 2009, 22 (10): 1534-1538.
|
[14] |
ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98 (4): 671-689.
|
[15] |
GLOWINSKI R. Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2015.
|
[16] |
王霄婷, 龙宪军, 彭再云. 求解非单调变分不等式的一种二次投影算法[J]. 应用数学和力学, 2022, 43 (8): 927-934. doi: 10.21656/1000-0887.420414
WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A double projection algorithm for solving non-monotone variational inequalities[J]. Applied Mathematics and Mechanics, 2022, 43 (8): 927-934. (in Chinese) doi: 10.21656/1000-0887.420414
|
[17] |
张霖森, 程兰, 张守贵. 曲率障碍下四阶变分不等式的交替方向乘子法[J]. 应用数学和力学, 2023, 44 (5): 595-604. doi: 10.21656/1000-0887.430243
ZHANG Linsen, CHENG Lan, ZHANG Shougui. An alternating direction multiplier method for 4th-order variational inequalities with curvature obstacle[J]. Applied Mathematics and Mechanics, 2023, 44 (5): 595-604. (in Chinese) doi: 10.21656/1000-0887.430243
|
[18] |
袁欣, 张守贵. 无摩擦弹性接触问题的自适应交替方向乘子法[J]. 应用数学和力学, 2023, 44 (8): 989-998. doi: 10.21656/1000-0887.440079
YUAN Xin, ZHANG Shougui. A self-adaptive alternating direction multiplier method for frictionless elastic contact problems[J]. Applied Mathematics and Mechanics, 2023, 44 (8): 989-998. (in Chinese) doi: 10.21656/1000-0887.440079
|
[19] |
王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018, 39 (12): 1410-1425.
WANG Xin, GUO Ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J]. Applied Mathematics and Mechanics, 2018, 39 (12): 1410-1425. (in Chinese)
|
[20] |
ZHANG S G, YAN Y Y, RAN R S. Path-following and semismooth Newton methods for the variational inequality arising from two membranes problem[J]. Journal of Inequalities and Applications, 2019, 2019 (1): 1.
|