Citation: | CHEN Rongfu, SHAO Yulong, REN Zhanwei. Research on Phase-Field Model for Fatigue Fracture of Functionally Graded Materials[J]. Applied Mathematics and Mechanics, 2025, 46(7): 893-903. doi: 10.21656/1000-0887.450179 |
[1] |
李信, 刘海昌, 滕元成, 等. 功能梯度材料的研究现状及展望[J]. 材料导报, 2012, 26(1): 370-373.
LI Xin, LIU Haichang, TENG Yuancheng, et al. Research status and future directions on functional gradient materials[J]. Materials Reports, 2012, 26(1): 370-373. (in Chinese)
|
[2] |
韩杰才, 徐丽, 王保林, 等. 梯度功能材料的研究进展及展望[J]. 固体火箭技术, 2004, 27(3): 207-215.
HAN Jiecai, XU Li, WANG Baolin, et al. Progress and prospects of functional gradient materials[J]. Journal of Solid Rocket Technology, 2004, 27(3): 207-215. (in Chinese)
|
[3] |
仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528-541.
ZHONG Zheng, WU Linzhi, CHEN Weiqiu. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics, 2010, 40(5): 528-541. (in Chinese)
|
[4] |
孙烨丽, 沈璐璐, 杨博. 功能梯度板中Griffith裂纹尖端应力场的三维解析研究[J]. 应用数学和力学, 2021, 42(1): 36-48. doi: 10.21656/1000-0887.410143
SUN Yeli, SHEN Lulu, YANG Bo. 3D analytical solutions of stress fields at Griffith crack tips in functionally graded plates[J]. Applied Mathematics and Mechanics, 2021, 42(1): 36-48. (in Chinese) doi: 10.21656/1000-0887.410143
|
[5] |
CARPINTERI A, PAGGI M, PUGNO N. An analytical approach for fracture and fatigue in functionally graded materials[J]. International Journal of Fracture, 2006, 141(3): 535-547.
|
[6] |
郭荣鑫, 索玉霞, 牛治亮, 等. Cu/WCp叠层功能梯度材料疲劳裂纹扩展速率的数值模拟[J]. 材料科学与工程学报, 2019, 37(6): 916-922.
GUO Rongxin, SUO Yuxia, NIU Zhiliang, et al. Numerical simulation of fatigue crack growth in Cu/WCp laminated functionally graded materials[J]. Journal of Materials Science and Engineering, 2019, 37(6): 916-922. (in Chinese)
|
[7] |
BHATTACHARYA S, SINGH I V, MISHRA B K. Fatigue-life estimation of functionally graded materials using XFEM[J]. Engineering With Computers, 2013, 29(4): 427-448.
|
[8] |
BHATTACHARYA S, SINGH I V, MISHRA B K. Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM[J]. International Journal of Fracture, 2013, 183(1): 81-97.
|
[9] |
KUMAR M, SINGH I V, MISHRA B K. Fatigue crack growth simulations of plastically graded materials using XFEM and J-integral decomposition approach[J]. Engineering Fracture Mechanics, 2019, 216: 106470.
|
[10] |
PATHAK H. Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach[J]. Theoretical and Applied Fracture Mechanics, 2017, 92: 59-75.
|
[11] |
PANTM, BHATTACHARYA S. Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM[J]. International Journal of Computational Methods, 2017, 14(1): 1750004.
|
[12] |
PANT M, SHARMA K, BHATTACHARYA S. Application of EFGM and XFEM for fatigue crack growth analysis of functionally graded materials[J]. Procedia Engineering, 2017, 173: 1231-1238.
|
[13] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
|
[14] |
ALESSI R, VIDOLI S, DE LORENZIS L. A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case[J]. Engineering Fracture Mechanics, 2018, 190: 53-73.
|
[15] |
CARRARA P, AMBATI M, ALESSI R, et al. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112731.
|
[16] |
HASAN M M, BAXEVANIS T. A phase-field model for low-cycle fatigue of brittle materials[J]. International Journal of Fatigue, 2021, 150: 106297.
|
[17] |
ALESSI R, ULLOA J. Endowing Griffith's fracture theory with the ability to describe fatigue cracks[J]. Engineering Fracture Mechanics, 2023, 281: 109048.
|
[18] |
SCHREIBERC, KUHN C, MVLLER R, et al. A phase field modeling approach of cyclic fatigue crack growth[J]. International Journal of Fracture, 2020, 225(1): 89-100.
|
[19] |
AMENDOLA G, FABRIZIO M, GOLDEN J M. Thermomechanics of damage and fatigue by a phase field model[J]. Journal of Thermal Stresses, 2016, 39(5): 487-499.
|
[20] |
KRISTENSEN P K, MARTÍNEZ-PAÑEDA E. Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102446.
|
[21] |
LI X, ZHOU C, XING C, et al. A phase-field fracture model for fatigue behavior in fiber-reinforced composites[J]. International Journal of Mechanical Sciences, 2024, 269: 108989.
|
[22] |
SI Z F, YU T T, FANG W H, et al. An adaptive multi-patch isogeometric phase-field model for fatigue fracture[J]. International Journal of Mechanical Sciences, 2024, 271: 109146.
|
[23] |
赵超. 功能梯度材料断裂行为的相场模拟研究[D]. 武汉: 华中科技大学, 2020.
ZHAO Chao. Study on phase field simulation of fracture behavior of functionally graded materials[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
|
[24] |
曾若愚. 形状记忆合金疲劳断裂行为的相场法研究[D]. 武汉: 华中科技大学, 2022.
ZENG Ruoyu. Phase field study on the fatigue fracture behavior of shape memory alloys[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
|
[25] |
SIDHARTH P C, RAO B N. Phase-field modeling of brittle fracture in functionally graded materials using exponential finite elements[J]. Engineering Fracture Mechanics, 2023, 291: 109576.
|
[26] |
SIMOES M, BRAITHWAITE C, MAKAYA A, et al. Modelling fatigue crack growth in shape memory alloys[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(4): 1243-1257.
|
[27] |
AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
|
[28] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/46/47/48): 2765-2778.
|
[29] |
TORABI J, ANSARI R. Crack propagation in functionally graded 2D structures: a finite element phase-field study[J]. Thin-Walled Structures, 2020, 151: 106734.
|
[30] |
BHATTACHARYA S, SINGH I V, MISHRA B K, et al. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM[J]. Computational Mechanics, 2013, 52(4): 799-814.
|