Volume 45 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
Citation: GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203

A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials

doi: 10.21656/1000-0887.450203
  • Received Date: 2024-07-11
  • Rev Recd Date: 2024-08-16
  • Publish Date: 2024-11-01
  • A phase-field model for the interfacial fracture of 2D decagonal quasicrystal (QC) bimaterials was proposed to predict the crack propagation path. Firstly, the discrete interface was transformed into a smeared interface through introduction of an interface phased field, and therefore the interface phase field governing equations and corresponding boundary conditions were obtained. The continuous distribution of the interface phased field was obtained with the finite element method, and in turn the singularity of material properties at the interface was eliminated. Subsequently, the governing equations for 2D QC bimaterials were obtained based on the Francfort-Marigo variational principle, and solved with the staggered solution scheme. In numerical examples, the present results were compared with existing references and excellent agreements were observed. In addition, the effects of the phason field on the crack propagation path were investigated, with the evolution of multiple cracks explored.
  • loading
  • [1]
    MACIÁ-BARBER E. Quasicrystals: Fundamentals and Applications[M]. CRC Press, 2020.
    [2]
    杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247

    YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J]. Applied Mathematics and Mechanics, 2024, 45(2): 144-154. (in Chinese) doi: 10.21656/1000-0887.440247
    [3]
    赵雪芬, 卢绍楠, 马园园, 等. 一维六方准晶非周期平面内中心开口裂纹的平面热弹性问题[J]. 应用数学和力学, 2024, 45(3): 303-317.

    ZHAO Xuefen, LU Shaonan, MA Yuanyuan, et al. The plane thermoelastic problem of a central opening crack in the 1D hexagonal quasicrystal non-periodic plane[J]. Applied Mathematics and Mechanics, 2024, 45(3): 303-317. (in Chinese)
    [4]
    张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

    ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. (in Chinese) doi: 10.21656/1000-0887.420202
    [5]
    ZHAO M, DANG H, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 1: theoretical solution[J]. Engineering Fracture Mechanics, 2017, 179: 59-78. doi: 10.1016/j.engfracmech.2017.04.019
    [6]
    DANG H, ZHAO M, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method[J]. Engineering Fracture Mechanics, 2017, 180: 268-281. doi: 10.1016/j.engfracmech.2017.05.042
    [7]
    FAN C, LV S, DANG H, et al. Fundamental solutions and analysis of the interface crack for two-dimensional decagonal quasicrystal bimaterial via the displacement discontinuity method[J]. Engineering Analysis With Boundary Elements, 2019, 106: 462-472. doi: 10.1016/j.enganabound.2019.05.029
    [8]
    ZHAO M, FAN C, LU C S, et al. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1633-1648. doi: 10.1007/s10483-021-2786-5
    [9]
    ZHAO M, ZHANG X, FAN C, et al. Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks[J]. Mechanics of Advanced Materials and Structures, 2023, 30(10): 2001-2016. doi: 10.1080/15376494.2022.2048326
    [10]
    TREBIN H R, MIKULLA R, STADLER J, et al. Molecular dynamics simulations of crack propagation in quasicrystals[J]. Computer Physics Communications, 1999, 121/122: 536-539. doi: 10.1016/S0010-4655(99)00400-2
    [11]
    KRDZALIC G, BRUNELLI M, TREBIN H R. Temperature dependence of dislocation motion and crack propagation in a two-dimensional binary model quasicrystal[J/OL]. MRS Online Proceedings Library, 2001, 643(1): 71[2024-08-16]. https://link.springer.com/article/10.1557/PROC-643-K7.1.
    [12]
    RUDHART C, TREBIN H R, GUMBSCH P. Crack propagation in perfectly ordered and random tiling quasicrystals[J]. Journal of Non-Crystalline Solids, 2004, 334/335: 453-456. doi: 10.1016/j.jnoncrysol.2003.12.039
    [13]
    RÖSCH F, RUDHART C, ROTH J, et al. Dynamic fracture of icosahedral model quasicrystals: a molecular dynamics study[J]. Physical Review B, 2005, 72: 014128. doi: 10.1103/PhysRevB.72.014128
    [14]
    JUNG D Y, STEURER W. Mechanical properties of clusters in quasicrystal approximants: the example of the 1/1 Al-Cu-Fe approximant[J]. Physical Review B, 2011, 84(5): 054116. doi: 10.1103/PhysRevB.84.054116
    [15]
    吴祥法, 范天佑, 安冬梅. 用路径守恒积分计算平面准晶裂纹扩展的能量释放率[J]. 计算力学学报, 2000, 17(1): 34-42.

    WU Xiangfa, FAN Tianyou, AN Dongmei. Energy release rate of plane quasicrystals with crack determined by path-independent E-integral[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 34-42. (in Chinese)
    [16]
    ZHU A Y, FAN T Y. Dynamic crack propagation in decagonal Al-Ni-Co quasicrystal[J]. Journal of Physics: Condensed Matter, 2008, 20(29): 295217. doi: 10.1088/0953-8984/20/29/295217
    [17]
    TUPHOLME G E. An antiplane shear crack moving in one-dimensional hexagonal quasicrystals[J]. International Journal of Solids and Structures, 2015, 71: 255-261. doi: 10.1016/j.ijsolstr.2015.06.027
    [18]
    LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J]. Materials, 2023, 16(10): 3628. doi: 10.3390/ma16103628
    [19]
    ZHANG Z G, ZHANG B W, LI X, et al. A closed-form solution to the mechanism of interface crack formation with one contact area in decagonal quasicrystal bi-materials[J]. Crystals, 2024, 14(4): 316. doi: 10.3390/cryst14040316
    [20]
    ZHENG R F, LIU H N, LI P D, et al. Elliptic crack problem under shear mode in one-dimensional hexagonal quasicrystals with crack surface parallel to the quasiperiodic axis[J]. International Journal of Solids and Structures, 2024, 288: 112601. doi: 10.1016/j.ijsolstr.2023.112601
    [21]
    苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024, 54(2): 308-343.

    SU Yukun, MA Tao, ZHAO Xiaoxin, et al. Research progress of fatigue crack propagation method based on finite element technology[J]. Advances in Mechanics, 2024, 54(2): 308-343. (in Chinese)
    [22]
    赵高乐, 齐红宇, 李少林, 等. 燃气涡轮发动机关键部件疲劳小裂纹研究进展[J]. 力学进展, 2023, 53(4): 819-865.

    ZHAO Gaole, QI Hongyu, LI Shaolin, et al. Review of fatigue small cracks in key components of gas turbine engines[J]. Advances in Mechanics, 2023, 53(4): 819-865. (in Chinese)
    [23]
    裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45(4): 391-399.

    QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics, 2024, 45(4): 391-399. (in Chinese)
    [24]
    SUN T Y, GUO J H, PAN E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics, 2021, 42(8): 1077-1094. doi: 10.1007/s10483-021-2743-6
    [25]
    ZHANG M, GUO J H, LI Y S. Bending and vibration of two-dimensional decagonal quasicrystal nanoplatesvia modified couple-stress theory[J]. Applied Mathematics and Mechanics, 2022, 43(3): 371-388. doi: 10.1007/s10483-022-2818-6
    [26]
    陈韬, 郭俊宏, 田园. 一维六方准晶层合简支梁自由振动与屈曲的精确解[J]. 固体力学学报, 2023, 44(1): 109-119.

    CHEN Tao, GUO Junhong, TIAN Yuan. Exact solution of free vibration and buckling of one-dimensional hexagonal simply-supported and layered quasicrystal beams[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 109-119. (in Chinese)
    [27]
    原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260

    YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. (in Chinese) doi: 10.21656/1000-0887.440260
    [28]
    MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/48): 2765-2778.
    [29]
    FAN T. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [30]
    YUAN J H, WANG L, CHEN C P. Interfacial fracture analysis for heterogeneous materials based on phase field model[J]. Computational Materials Science, 2023, 220: 112066. doi: 10.1016/j.commatsci.2023.112066
    [31]
    FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342. doi: 10.1016/S0022-5096(98)00034-9
    [32]
    MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. doi: 10.1002/nme.2861
    [33]
    MOLNÁR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. doi: 10.1016/j.finel.2017.03.002
    [34]
    袁彦鹏. 准晶材料平面断裂问题分析[D]. 郑州: 郑州大学, 2018.

    YUAN Yanpeng. Analysis of plane fracture problem of quasicrystal[D]. Zhenzhou: Zhenzhou University, 2018. (in Chinese)
    [35]
    NGUYEN V P, NGUYEN G D, NGUYEN C T, et al. Modelling complex cracks with finite elements: a kinematically enriched constitutive model[J]. International Journal of Fracture, 2017, 203(1): 21-39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (116) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return