Citation: | LIU Ying, FU Xiaoheng, TANG Liping. Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235 |
[1] |
RANGAIAH G P. Multi-Objective Optimization: Techniques and Applications in Chemical Engineering[M]. Hackensack, NJ: World Scientific, 2009.
|
[2] |
FLIEGE J, WERNER R. Robust multiobjective optimization & applications in portfolio optimization[J]. European Journal of Operational Research, 2014, 234 (2): 422-433. doi: 10.1016/j.ejor.2013.10.028
|
[3] |
BOSSHARD R, KOLAR J W. Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (4): 1370-1382. doi: 10.1109/JESTPE.2016.2598755
|
[4] |
YU G, JIN Y, OLHOFER M. A multiobjective evolutionary algorithm for finding knee regions using two localized dominance relationships[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (1): 145-158. doi: 10.1109/TEVC.2020.3008877
|
[5] |
GONZAGA C C, CASTILLO R A. A nonlinear programming algorithm based on non-coercive penalty functions[J]. Mathematical Programming, 2003, 96 (1): 87-101. doi: 10.1007/s10107-002-0332-z
|
[6] |
HUANG X X, YANG X Q, TEO K L. Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications[J]. Journal of Optimization Theory and Applications, 2004, 123 (2): 391-407. doi: 10.1007/s10957-004-5155-z
|
[7] |
PARETO V. Cours D' économie Politique[M]. Paris: Pichon, Libraire, 1906.
|
[8] |
EHRGOTT M. Multicriteria Optimization[M]. Berlin: Springer, 2000.
|
[9] |
GEOFFRION A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22 (3): 618-630. doi: 10.1016/0022-247X(68)90201-1
|
[10] |
DENG S. Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization[J]. Journal of Optimization Theory and Applications, 1998, 96 (1): 123-131. doi: 10.1023/A:1022615217553
|
[11] |
DENG S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive Banach spaces[J]. Journal of Optimization Theory and Applications, 2009, 140 (1): 1-7. doi: 10.1007/s10957-008-9443-x
|
[12] |
DENG S. Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 2010, 144 (1): 29-42. doi: 10.1007/s10957-009-9589-1
|
[13] |
CHEN Z. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization, 2013, 55 : 507-520. doi: 10.1007/s10898-012-0032-z
|
[14] |
GUTIÉRREZ C, LÓPEZ R, NOVO V. Existence and boundedness of solutions in infinite-dimensional vector optimization problems[J]. Journal of Optimization Theory and Applications, 2014, 162 (2): 515-547. doi: 10.1007/s10957-014-0541-7
|
[15] |
FLORES-BAZÁN F, VERA C. Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization[J]. Journal of Optimization Theory and Applications, 2006, 130 (2): 185-207. doi: 10.1007/s10957-006-9098-4
|
[16] |
LI G H, LI S J, YOU M X. Recession function and its applications in optimization[J]. Optimization, 2021, 70 (12): 2559-2578. doi: 10.1080/02331934.2020.1786569
|
[17] |
LI G H, LI S J, YOU M X. Asymptotic analysis of scalarization functions and applications[J]. Journal of Industrial and Management Optimization, 2023, 19 (4): 2367-2380. doi: 10.3934/jimo.2022046
|
[18] |
WANG G, FU Y H. Characterizing the nonemptiness and compactness of weakly efficient solution sets for non-convex multiobjective optimization problems[J]. Operations Research Letters, 2024, 53 : 107092. doi: 10.1016/j.orl.2024.107092
|
[19] |
FLORES-BAZÁN F, LÓPEZ R, VERA C. Vector asymptotic functions and their application to multiobjective optimization problems[J]. SIAM Journal on Optimization, 2024, 34 (2): 1826-1851. doi: 10.1137/23M158098X
|
[20] |
ROCKAFELLAR R T, WETS R J B. Variational Analysis[M]. Berlin: Springer, 1998.
|