| Citation: | WANG Weican, LUO Gang, ZHAO Chaojun, FAN Xingchao, CHEN Wei. Analysis and Numerical Simulation of Bird Impact Damages of 3-Side-Clamped Titanium Alloy Blades[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1267-1284. doi: 10.21656/1000-0887.450242 |
|
[2]陈光. 飞机发动机的防鸟撞设计与试验[J]. 国际航空, 2009(11): 63-65.(CHEN Guang. Prevention of bird strike hazards to aero-engines[J].International Aviation,2009(11): 63-65. (in Chinese))
|
|
陈伟, 高德平, 尹晶. 航空发动机叶片的鸟撞击损伤研究[J]. 燃气涡轮试验与研究, 1998,11(4): 34-39.
(CHEN Wei, GAO Deping, YIN Jing. Research on bird impact damage of aircraft engine blades[J].Gas Turbine Experiment and Research,1998,11(4): 34-39. (in Chinese))
|
|
[3]HOU N, LI Y, LIU J. Numerical simulation of bird impact on hollow blades of titanium fan assembly[J].Journal of Aerospace Engineering,2019,32(4): 04019044.
|
|
[4]WILBECK J S, REIMANE W. Impact behaviour low strength projectiles[R]. AFML, 1978.
|
|
[5]WILBECK J S, BARBER J P. Bird impact loading[J].The Shock and Vibration Bulletin,1978,48(20): 115-122.
|
|
[6]BARBER J S, WILBECK J S, TAYLOR H R. Bird impact forces and pressures on rigid and compliant target: technical report AFFDL-TR-77-60[R]. Ohio: University of Dayton Research Institute, 1978.
|
|
[7]BARBER J P, TAYLOR H R, WILBECK J S. Characterization of bird impact on a rigid plate: part Ⅰ: technical report AFFDL-TR-75-5[R]. Dayton: Dayton University, 1975.
|
|
[8]尹晶, 高德平, 范尔宁. 鸟撞击叶片时的载荷模型[J]. 航空动力学报, 1993,8(4): 363-367.(YIN Jing, GAO Deping, FAN Erning. Loading models for bird impacting on blades[J].Journal of Aerospace Power,1993,8(4): 363-367. (in Chinese))
|
|
[9]王斌, 宁宇, 刘军, 等. 发动机一级转子抗鸟撞试验与数值模拟研究[J]. 航空工程进展, 2024,15(2): 117-124.(WANG Bin, NING Yu, LIU Jun, et al. Experiment and numerical simulation on bird strike with blades of an engine primary compressor[J].Advances in Aeronautical Science and Engineering,2024,15(2): 117-124. (in Chinese))
|
|
[10]MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J].International Journal of Impact Engineering,2008,35(6): 487-498.
|
|
[11]RICHARD B. The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing[C]//International Bird Strike Committee 25.Amsterdam, 2000.
|
|
[12]黄福增, 刘永泉, 张东明, 等. 发动机风扇转子旋转状态下鸟撞试验研究[J]. 实验力学, 2020,35(6): 1136-1146.(HUANG Fuzeng, LIU Yongquan, ZHANG Dongming, et al. Investigation on bird-strike test of gas turbine rotating fan blade[J].Journal of Experimental Mechanics,2020,35(6): 1136-1146. (in Chinese))
|
|
[13]张海洋, 蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术, 2015,36(9): 1382-1388.(ZHANG Haiyang, YU Duokui, WANG Xiangping, et al. Numerical and experimental investigation of damage of bird impact on fan blades[J].Journal of Propulsion Technology,2015,36(9): 1382-1388. (in Chinese))
|
|
[14]张永强, 贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报, 2022,36(5): 77-87.(ZHANG Yongqiang, JIA Lin. Dynamic response and damage failure behavior of TC4 titanium alloy hollow fan blade[J].Chinese Journal of High Pressure Physics,2022,36(5): 77-87. (in Chinese))
|
|
[15]贾林, 李从富, 邹学韬, 等. 鸟撞冲击下TC4钛合金平板的变形和破坏[J]. 高压物理学报, 2020,34(4): 59-68.(JIA Lin, LI Congfu, ZOU Xuetao, et al. Deformation and destruction of TC4 titanium alloy plate under the bird impact[J].Chinese Journal of High Pressure Physics,2020,34(4): 59-68. (in Chinese))
|
|
[16]曹琬婷. 钛合金叶片鸟撞击动态响应及损伤工程评估方法研究[D]. 南京: 南京航空航天大学, 2022.(CAO Wanting. Dynamic response and damage engineering evaluation method study of titanium alloy blade under bird impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese))
|
|
[17]马明瑞, 陈福振, 严红, 等. 基于多分辨率SPH-FEM耦合方法的鸟撞问题数值模拟[J]. 航空学报, 2024,45(21): 251-271.(MA Mingrui, CHEN Fuzhen, YAN Hong, et al. Numerical simulation of bird strike problem based on multi-resolution SPH-FEM coupling method[J].Acta Aeronautica et Astronautica Sinica,2024,45(21): 251-271. (in Chinese))
|
|
[18]CERQUAGLIA M, DELIGE G, BOMAN R, et al. Reprint of: the particle finite element method for the numerical simulation of bird strike[J].International Journal of Impact Engineering,2017,110: 72-84.
|
|
[19]汪松柏, 牛潇, 霍嘉欣, 等. 航空发动机风扇转子叶片抗鸟撞改进设计[J]. 航空动力学报, 2024,39(2): 91-99.(WANG Songbai, NIU Xiao, HUO Jiaxin, et al. Improved design for anti-bird impact of aero-engine fan rotor blades[J].Journal of Aerospace Power,2024,39(2): 91-99. (in Chinese))
|
|
[20]ZHANG Z, LI L, ZHANG D. Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method[J].Aerospace Science and Technology,2018,81: 284-293.
|
|
[21]李国举, 王宪, 尹莉萍, 等. 钛合金风扇叶片抗鸟撞动态力学响应仿真[J]. 中国新技术新产品, 2023(11): 13-15.(LI Guoju, WANG Xian, YIN Liping, et al. Simulation of dynamic mechanical response of titanium alloy fan blades against bird impact[J].New Technology & New Products of China,2023(11): 13-15. (in Chinese))
|
|
[22]姜凯, 陈伟, 韩佳奇, 等. 鸟撞发动机整机响应显式-隐式仿真[J]. 航空发动机, 2023,49(1): 109-114.(JIANG Kai, CHEN Wei, HAN Jiaqi, et al. Explicit-implicit simulation of engine response under bird impact[J].Aeroengine,2023,49(1): 109-114. (in Chinese))
|
|
[23]LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods[J].International Journal of Impact Engineering,2009,36(10/11): 1276-1287.
|
|
[24]单斌. 基于刚性靶冲击试验的人工鸟材料参数识别研究[D]. 南京: 南京航空航天大学, 2014.(SHAN Bin. Study on identification of artificial bird’s material parameter based on rigid target impact test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese))
|
|
[25]LUO Gang, ZHANG Fengqi, XU Ziming, et al. Internal reinforcement mechanisms for gelatin bird projectiles for artificial bird impact tests[J].Mechanics of Advanced Materials and Structures,2023,30(15): 3075-3085.
|
|
[26]LUO Gang, XU Ziming, SHEN Haitao, et al. Experimental study on the impact load of internally supported gelatin bird projectiles[J].Engineering Failure Analysis,2021,124: 105336.
|
|
[27]LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools[J].International Review of Mechanical Engineering,2007,1(4): 380-389.
|
|
[28]郑伟, 王硕, 黄小娴. TC4钛合金的力学性能分析和本构模型的构建[J]. 山东建筑大学学报, 2024,39(3): 76-82.(ZHENG Wei, WANG Shuo, HUANG Xiaoxian. Mechanics property analysis and constitutive model construction of TC4 titanium alloy[J].Journal of Shandong Jianzhu University,2024,39(3): 76-82. (in Chinese))
|
|
[29]吴小燕, 苏超群, 汤洋, 等. 激光冲击TC4钛合金材料本构模型参数的修正方法[J]. 机械工程与自动化, 2024(2): 64-65.(WU Xiaoyan, SU Chaoqun, TANG Yang, et al. Parameter modification method for material constitutive model of laser shock TC4 titanium alloy[J].Mechanical Engineering & Automation,2024(2): 64-65. (in Chinese))
|
|
[30]廖宇, 钟贵勇, 舒茂盛, 等. 激光增材制造金属材料疲劳寿命研究[J]. 应用数学和力学, 2023,44(2): 201-208.(LIAO Yu, ZHONG Guiyong, SHU Maosheng, et al. A study on the fatigue life of the laser additive manufactured metallic material[J].Applied Mathematics and Mechanics,2023,44(2): 201-208. (in Chinese))
|
|
[31]范亚杰, 李燕, 李中潘, 等. 接触与大变形问题的光滑有限元分析[J]. 应用数学和力学, 2024,45(2): 127-143.(FAN Yajie, LI Yan, LI Zhongpan, et al. Smoothed finite element analysis of contact and large deformation problems[J].Applied Mathematics and Mechanics,2024,45(2): 127-143. (in Chinese))
|