Volume 46 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
CHENG Xiang, PENG Zaiyun, YANG Xin, WEN Ming. Hadamard Well-Posedness in 2 Types of Set Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273
Citation: CHENG Xiang, PENG Zaiyun, YANG Xin, WEN Ming. Hadamard Well-Posedness in 2 Types of Set Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273

Hadamard Well-Posedness in 2 Types of Set Optimization Problems

doi: 10.21656/1000-0887.450273
  • Received Date: 2024-10-15
  • Rev Recd Date: 2025-06-08
  • Available Online: 2025-07-30
  • Publish Date: 2025-07-01
  • The Hadamard well-posedness of a set optimization problem (P) and an infinite set optimization problem (ISOP) under upper set order relation was studied. Firstly, in the case of the gamma convergence of the set-valued mapping sequence, the definitions of the generalized Hadamard well-posedness and the ε-generalized Hadamard well-posedness for (P) were given, the relationship between these 2 types of well-posednesses were established, and the sufficient conditions for the Hadamard well-posedness of (P) were obtained. Then the sufficient conditions for the Hadamard well-posedness of (ISOP) were studied with the concept of Hausdorff cone-continuity under functional perturbations of both constraint sets and objective maps. The results improve those in the relevant previous references, enriching the study of set optimization problems.
  • loading
  • [1]
    KUROIWA D. Existence theorems of set optimization with set-valued maps[J]. Journal of Information and Optimization Sciences, 2003, 24 (1): 73-84.
    [2]
    KHAN A A, TAMMER C, ZǍLINESCU C. Set-Valued Optimization: an Introduction With Applications[M]. Berlin, Heidelberg: Springer, 2015.
    [3]
    PENG Z Y, CHEN X J, ZHAO Y B, et al. Painlevé-Kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets[J]. Journal of Global Optimization, 2023, 87 (2): 759-781.
    [4]
    HAN Y, ZHANG K, HUANG N J. The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé-Kuratowski convergence[J]. Mathematical Methods of Operations Research, 2020, 91 (1): 175-196.
    [5]
    HAN Y. Painlevé-Kuratowski convergences of the solution sets for set optimization problems with cone-quasiconnectedness[J]. Optimization, 2022, 71 (7): 2185-2208.
    [6]
    LALITHA C S. External and internal stability in set optimization using gamma convergence[J]. Carpathian Journal of Mathematics, 2019, 35 (3): 393-406.
    [7]
    邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41 (8): 912-920.

    SHAO Chongyang, PENG Zaiyun, LIU Fuping, et al. Berge lower semi-continuity of parametric generalized vector quasi-equilibrium problems under improvement set mappings[J]. Applied Mathematics and Mechanics, 2020, 41 (8): 912-920. (in Chinese)
    [8]
    曾悦, 彭再云, 梁仁莉, 等. 自由支配集下近似平衡约束向量优化问题的稳定性研究[J]. 应用数学和力学, 2021, 42 (9): 958-967. doi: 10.21656/1000-0887.410244

    ZENG Yue, PENG Zaiyun, LIANG Renli, et al. Stability of vector optimization problems under approximate equilibrium constraints via free-disposal sets[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 958-967. (in Chinese) doi: 10.21656/1000-0887.410244
    [9]
    GERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67 (2): 297-320.
    [10]
    PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization, 2018, 70 (1): 55-69.
    [11]
    PENG Z Y, WANG X, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis, 2019, 27 (1): 103-118.
    [12]
    KUROIWA D. Some duality theorems of set-valued optimization with natural criteria[C]//Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. Singapore: World Scientific, 1999: 221-228.
    [13]
    HADAMARD J. Sur les problèmes aux dérivées partielles et leur signification physique[J]. Princeton University Bulletin, 1902, 13 : 49-52.
    [14]
    TIKHONOV A N. On the stability of the functional optimization problem[J]. USSR Computational Mathematics and Mathematical Physics, 1966, 6 (4): 28-33.
    [15]
    DONTCHEV A L, ZOLEZZI T. Well-Posed Optimization Problems, Lecture Notes in Mathematics[M]. Berlin: Springer, 1993.
    [16]
    ANH L Q, KHANH P Q. Continuity of solution maps of parametric quasiequilibrium problems[J]. Journal of Global Optimization, 2010, 46 (2): 247-259.
    [17]
    PENG Z Y, ZHAO Y B, YIU K F C, et al. Stability analysis for semi-infinite vector optimization problems under functional perturbations[J]. Numerical Functional Analysis and Optimization, 2022, 43 (9): 1027-1049.
    [18]
    曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015, 36 (6): 651-658. doi: 10.3879/j.issn.1000-0887.2015.06.009

    ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and hadam ard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics, 2015, 36 (6): 651-658. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.06.009
    [19]
    ZHANG W Y, LI S J, TEO K L. Well-posedness for set optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71 (9): 3769-3778.
    [20]
    LI S J, ZHANG W Y. Hadamard well-posed vector optimization problems[J]. Journal of Global Optimization, 2010, 46 (3): 383-393.
    [21]
    ZENG J, LI S J, ZHANG W Y, et al. Hadamard well-posedness for a set-valued optimization problem[J]. Optimization Letters, 2013, 7 (3): 559-573.
    [22]
    LONG X J, PENG J W, PENG Z Y. Scalarization and pointwise well-posedness for set optimization problems[J]. Journal of Global Optimization, 2015, 62 (4): 763-773.
    [23]
    GUPTA M, SRIVASTAVA M. Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior[J]. Journal of Global Optimization, 2019, 73 (2): 447-463.
    [24]
    MIHOLCA M. Global well-posedness in set optimization[J]. Numerical Functional Analysis and Optimization, 2021, 42 (14): 1700-1717.
    [25]
    GUPTA M, SRIVASTAVA M. Hadamard well-posedness and stability in set optimization[J]. Positivity, 2024, 28 (1): 7.
    [26]
    PENG Z Y, LONG X J, WANG X F, et al. Generalized Hadamard well-posedness for infinite vector optimization problems[J]. Optimization, 2017, 66 (10): 1563-1575.
    [27]
    DUY T Q. Hadamard well-posedness for a set optimization problem with an infinite number of constraints[J]. Optimization, 2024, 73 (5): 1625-1643.
    [28]
    BERGE C. Topological Spaces[M]. London: Oliver and Boyd, 1963.
    [29]
    AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York: Wiley, 1984.
    [30]
    GOPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces[M]. New York: Springer, 2003.
    [31]
    LUC D T. Theory of Vector Optimization[M]. Berlin, Heidelberg: Springer, 1989.
    [32]
    HERNÁNDEZ E, LÓPEZ R. About asymptotic analysis and set optimization[J]. Set-Valued and Variational Analysis, 2019, 27 (3): 643-664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return