ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Parallel Symmetry Cracks in Magneto-Electro-Elastic Composites Under Harmonic Anti-Plane Waves[J]. Applied Mathematics and Mechanics, 2006, 27(5): 519-526.
Citation: YIN Jianping, ZHANG Chenxu, SUN Ruoheng, CHEN Xixi, MIAO Yinggang. Study of Dynamic Loading Tests on Low-Impedance Specimens[J]. Applied Mathematics and Mechanics, 2025, 46(5): 650-660. doi: 10.21656/1000-0887.450279

Study of Dynamic Loading Tests on Low-Impedance Specimens

doi: 10.21656/1000-0887.450279
  • Received Date: 2024-10-21
  • Rev Recd Date: 2025-04-10
  • Publish Date: 2025-05-01
  • The key problems of the effective acquisition of low-impedance transmitted signals and the stress equilibrium in the Hopkinson bar loading tests on low-impedance specimens with high strain rates, were investigated. Based on the previous research fundaments, low-impedance elastic transmitted bars were introduced to replace the traditional metal transmitted bar, the in-situ calibrated semiconductor strain gauge technology was used to amplify weak transmitted signals, and the low-impedance specimens were tested with high precision. Reconstruction and calculation of the stress wave loading process were conducted to get the stress equilibrium history and the influential factors' sensitivity. The trapezoidal incident wave was proposed to realize stress equilibrium and achieve constant strain rate loading on specimens as early as possible. The results show that, low impedance polymethyl methacrylate bars/tubes as transmitted bars along with semiconductor strain gauges can acquire weak signals as low as several Newtons. The stress equilibrium history of the low-impedance specimen depends on the elastic wave velocity. Under the trapezoidal incident wave loading, the stress equilibrium and constant strain rate loading can be achieved at 2 characteristic periods. Based on the design of specimen thicknesses, the critical effective strain consistency can be achieved under different stress rate loadings.
  • [1]
    张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型[J]. 爆炸与冲击, 2015, 35 (1): 51-56.

    ZHANG Longhui, ZHANG Xiaoqing, YAO Xiaohu, et al. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion and Shock Waves, 2015, 35 (1): 51-56. (in Chinese)
    [2]
    许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术[J]. 力学学报, 2016, 48 (3): 654-659.

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (3): 654-659. (in Chinese)
    [3]
    张方举, 何鹏, 胡文军, 等. 软材料的低阻抗SHPB实验技术与应用[J]. 中国测试, 2012, 38 (2): 17-20.

    ZHANG Fangju, HE Peng, HU Wenjun, et al. Application and experimental technique of low impedance SHPB for soft materials[J]. China Measurement & Test, 2012, 38 (2): 17-20. (in Chinese)
    [4]
    章超, 徐松林, 王鹏飞. 基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试[J]. 实验力学, 2013, 28 (5): 629-634.

    ZHANG Chao, XU Songlin, WANG Pengfei. Test of aluminum foam deforming process under impact load based on digital image correlation method[J]. Journal of Experimental Mechanics, 2013, 28 (5): 629-634. (in Chinese)
    [5]
    HOU B, WANG Y, TANG Z B, et al. The mechanical behaviors of corrugated sandwich panel under quasi-static and dynamic shear-compressive loadings[J]. International Journal of Impact Engineering, 2021, 156 : 103956. doi: 10.1016/j.ijimpeng.2021.103956
    [6]
    周睿, 张志家, 张旺, 等. 多壁管增强泡沫铝结构动态响应及吸能性能研究[J]. 应用数学和力学, 2024, 45 (1): 12-24. doi: 10.21656/1000-0887.440186

    ZHOU Rui, ZHANG Zhijia, ZHANG Wang, et al. Dynamic response and energy absorption performances of multi-walled tube reinforced aluminum foam structure[J]. Applied Mathematics and Mechanics, 2024, 45 (1): 12-24. (in Chinese) doi: 10.21656/1000-0887.440186
    [7]
    范志庚, 万强, 牛红攀, 等. 计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究[J]. 应用数学和力学, 2024, 45 (2): 167-174. doi: 10.21656/1000-0887.440249

    FAN Zhigeng, WAN Qiang, NIU Hongpan, et al. A nonlinear viscoelastic model for silicon rubber foam cushion considering time-varying evolution characteristics[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 167-174. (in Chinese) doi: 10.21656/1000-0887.440249
    [8]
    MIAO Y G, ZHANG H N, HE H, et al. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range[J]. Composite Structures, 2019, 222 : 110923. doi: 10.1016/j.compstruct.2019.110923
    [9]
    高宁, 朱志武. 铝合金应变率效应综述及其机理研究[J]. 应用数学和力学, 2014, 35 (S1): 208-212.

    GAO Ning, ZHU Zhiwu. Study on the strain rate effects and mechanisms for aluminum alloys[J]. Applied Mathematics and Mechanics, 2014, 35 (S1): 208-212. (in Chinese)
    [10]
    CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK[J]. Composites (Part B): Engineering, 2018, 136 : 187-196. doi: 10.1016/j.compositesb.2017.10.031
    [11]
    QIN D Y, MIAO Y G, LI Y L. Formation of adiabatic shearing band for high-strength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution[J]. Defence Technology, 2022, 18 (11): 2045-2051. doi: 10.1016/j.dt.2022.06.010
    [12]
    MIAO Y G, DU W X, YIN J P, et al. Characterizing multi mechanical behaviors for epoxy-like materials under wide strain rate range[J]. Polymer Testing, 2022, 116 : 107804. doi: 10.1016/j.polymertesting.2022.107804
    [13]
    WU Z B, YIN J P, LI M, et al. Rate-dependent constitutive behavior and mechanism of CMDB under tension loading[J]. Polymer Testing, 2024, 140 : 108584. doi: 10.1016/j.polymertesting.2024.108584
    [14]
    HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Proceedings of the Royal Society of London (Series A), 1914, 89 (612): 411-413.
    [15]
    MIYAMBO M E, VON KALLON D V, PANDELANI T, et al. Review of the development of the split Hopkinson pressure bar[J]. Procedia CIRP, 2023, 119 : 800-808. doi: 10.1016/j.procir.2023.04.010
    [16]
    WANG L L. Foundations of Stress Waves[M]. Amsterdam: Elsevier, 2007: 43-49, 65-70.
    [17]
    CHEN W, SONG B. Split Hopkinson (Kolsky) Bar Design, Testing and Applications[M]. New York: Springer, 2010: 37-51.
    [18]
    卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013: 23-52.

    LU Fangyun, CHEN Rong, LIN Yuliang, et al. Hopkinson Bar Techniques[M]. Beijing: Science Press, 2013: 23-52. (in Chinese)
    [19]
    胡时胜. Hopkinson压杆实验技术的应用进展[J]. 实验力学, 2005, 20 (4): 589-594. doi: 10.3969/j.issn.1001-4888.2005.04.016

    HU Shisheng. The application development of experimental technique of Hopkinson pressure bar[J]. Journal of Experimental Mechanics, 2005, 20 (4): 589-594. (in Chinese) doi: 10.3969/j.issn.1001-4888.2005.04.016
    [20]
    ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 1997, 19 (4): 319-330. doi: 10.1016/S0734-743X(96)00038-3
    [21]
    CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39 : 81-85. doi: 10.1007/BF02331109
    [22]
    CHEN W, LU F, ZHOU B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40 (1): 1-6. doi: 10.1007/BF02327540
    [23]
    SONG B, CHEN W, JIANG X. Split Hopkinson pressure bar experiments on polymeric foams[J]. International Journal of Vehicle Design, 2005, 37 (2/3): 185-198. doi: 10.1504/IJVD.2005.006656
    [24]
    YIN J P, MIAO Y G, WU Z B, et al. A novel Hopkinson tension bar system for testing polymers under intermediate strain rate and large deformation[J]. International Journal of Impact Engineering, 2025, 198 : 105197. doi: 10.1016/j.ijimpeng.2024.105197
    [25]
    王宝珍, 郑宇轩, 胡时胜. 猪后腿肌肉的动态拉伸性能[J]. 爆炸与冲击, 2010, 30 (5): 449-455.

    WANG Baozhen, ZHENG Yuxuan, HU Shisheng. Dynamic tensile properties of porcine ham muscle[J]. Explosion and Shock Waves, 2010, 30 (5): 449-455. (in Chinese)
    [26]
    徐沛保, 巫绪涛, 李和平. 中高应变率下EPS泡沫的冲击压缩实验[J]. 实验力学, 2012, 27 (4): 480-485.

    XU Peibao, WU Xutao, LI Heping. Impact compression experiment for EPS foam under mid-high strain rate[J]. Journal of Experimental Mechanics, 2012, 27 (4): 480-485. (in Chinese)
    [27]
    MIAO Y G, LI Y L, DENG Q, et al. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar[J]. Journal of Beijing Institute of Technology, 2015, 24 (2): 269-276.
    [28]
    周永康, 陈力, 崔世堂. 一种新型软材料动态直接拉伸实验技术[J]. 振动与冲击, 2017, 36 (22): 144-148.

    ZHOU Yongkang, CHEN Li, CUI Shitang. An improved SHTB experimental facility for soft material[J]. Journal of Vibration and Shock, 2017, 36 (22): 144-148. (in Chinese)
    [29]
    鲍振宇, 温垚珂, 韩瑞国, 等. 弹道明胶的动态力学测试方法研究[J]. 中国测试, 2019, 45 (9): 33-37.

    BAO Zhenyu, WEN Yaoke, HAN Ruiguo, et al. Study on dynamic mechanical testing method of ballistic gelatin[J]. China Measurement & Test, 2019, 45 (9): 33-37. (in Chinese)
    [30]
    XU P D, TANG L Q, ZHANG Y R, et al. SHPB experimental method for ultra-soft materials in solution environment[J]. International Journal of Impact Engineering, 2022, 159 : 104051. doi: 10.1016/j.ijimpeng.2021.104051
    [31]
    WEN Y K, XU L, CHEN A J, et al. Dynamic compressive response of porcine muscle measured using a split Hopkinson bar system with a pair of PVDF force transducers[J]. Defence Technology, 2023, 28 : 298-305. doi: 10.1016/j.dt.2022.08.011
    [32]
    MIAO Y, GOU X, SHEIKH M Z. A technique for in situ calibration of semiconductor strain gauges used in Hopkinson bar tests[J]. Experimental Techniques, 2018, 42 : 623-629. doi: 10.1007/s40799-018-0283-9
    [33]
    ZHANG J X, MIAO Y G, QIN Q H, et al. Static and dynamic experiments on hydrogels: effects of the chemical composition of the fluid[J]. Mechanics of Materials, 2021, 154 : 103717. doi: 10.1016/j.mechmat.2020.103717
    [34]
    LIU Y, DENG Q, WANG Y S, et al. Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue[J]. Mechanics of Time-Dependent Materials, 2024, 28 (4): 2921-2936. doi: 10.1007/s11043-024-09697-1
    [35]
    周风华, 王礼立, 胡时胜. 高聚物SHPB试验中试件早期应力不均匀性的影响[J]. 实验力学, 1992, 7 (1): 23-29.

    ZHOU Fenghua, WANG Lili, HU Shisheng. On the effect of stress nonuniformness in polymer specimen of SHPB tests[J]. Journal of Experimental Mechanics, 1992, 7 (1): 23-29. (in Chinese)
    [36]
    RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77 (1): 263-267. doi: 10.1111/j.1151-2916.1994.tb06987.x
    [37]
    YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31 (2): 129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [38]
    王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25 (1): 17-25.

    WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25 (1): 17-25. (in Chinese)
    [39]
    ZHU J, HU S, WANG L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J]. International Journal of Impact Engineering, 2009, 36 (1): 61-72. doi: 10.1016/j.ijimpeng.2008.04.007
    [40]
    FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41 (1): 40-46. doi: 10.1007/BF02323102
    [41]
    徐明利, 张若棋, 王悟, 等. 波形整形器在酚醛树脂的霍普金森压杆实验中的应用[J]. 爆炸与冲击, 2002, 22 (4): 377-380. doi: 10.3321/j.issn:1001-1455.2002.04.017

    XU Mingli, ZHANG Ruoqi, WANG Wu, et al. Application of wave shaper in SHPB experimental study of phenolic resin[J]. Explosion and Shock Waves, 2002, 22 (4): 377-380. (in Chinese) doi: 10.3321/j.issn:1001-1455.2002.04.017
    [42]
    SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics, 2004, 44 (3): 300-312. doi: 10.1007/BF02427897
    [43]
    MIAO Y G. On loading ceramic-like materials using split Hopkinson pressure bar[J]. Acta Mechanica, 2018, 229 (8): 3437-3452. doi: 10.1007/s00707-018-2166-7
    [44]
    LIU L T, DENG Q, WANG R F, et al. Dynamic enhancement induced by interface for additively manufactured continuous carbon fiber reinforced composites[J]. Polymer Testing, 2024, 132 : 108382. doi: 10.1016/j.polymertesting.2024.108382
    [45]
    YIN J P, ZHANG C X, SUN R H, et al. Controllable kilohertz impact fatigue loading functioned by cyclic stress wave of Hopkinson tension bar and its application for TC4 titanium alloy[J]. International Journal of Fatigue, 2025, 194 : 108828. doi: 10.1016/j.ijfatigue.2025.108828
    [46]
    ZHANG C X, SUN R H, YIN J P, et al. Failure behaviours of steel/aluminium threaded connections under impact fatigue[J]. Engineering Failure Analysis, 2025, 174 : 109473. doi: 10.1016/j.engfailanal.2025.109473
    [47]
    MIAO Y G, LI Y L, LIU H Y, et al. Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar[J]. International Journal of Mechanical Sciences, 2016, 108/109 : 188-196. doi: 10.1016/j.ijmecsci.2016.02.005
  • Relative Articles

    [1]LI Ya, YI Zhijian, WANG Min, SU Kang. The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130
    [2]CHEN Shenshen, WANG Juan. Application of a Coupled Interpolating Element-Free Galerkin Scaled Boundary Method and Finite Element Method in Fracture Analysis of Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1258-1267. doi: 10.21656/1000-0887.390129
    [3]DUAN Shujin, FUJII Koju, NAKAGAWA Kenji. Construction of General Analytic Functions With Finite Stress Concentration for Mono-Material Cracks and Bi-Material Interface Cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030
    [4]CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
    [5]CHEN Xiao-yun, YU Gui-lan. Propagation of Harmonic Waves Through a Micro Gap With Consideration of Frictional Contact[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1329-1341. doi: 10.3879/j.issn.1000-0887.2011.11.007
    [6]HU Yang-fan, WANG Biao. Solution of the Two Dimensional Scattering Problem in Piezoelectric/Piezomagnetic Media by Polarization Method[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1395-1410.
    [7]ZHOU Zhen-gong, WANG Biao. Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(4): 379-390.
    [8]HOU Peng-fei, DING Hao-jiang, LEUNG Andraw-yt. Three-Dmensional Interactions of a Circular Crack in a Transversely Isotropic Piezoelectric Space With Resultant Sources[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1261-1270.
    [9]LI Lin, ZHOU Zhen-gong, WANG Biao. Scattering of Anti-Plane Shear Waves in a Functionally Graded Material Strip With an Off-Center Vertical Crack[J]. Applied Mathematics and Mechanics, 2006, 27(6): 646-654.
    [10]QU Gui-min, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Collinear Permeable Cracks in a Piezoelectric Layer Bonded to Two Half Spaces[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1152-1160.
    [11]HU Yuan-tai, LI Guo-qing, JIANG Shu-nong, HU Hong-ping, YANG Jia-shi. Interaction of Electric Charges in a Piezoelectric With Rigid External Cracks[J]. Applied Mathematics and Mechanics, 2005, 26(8): 911-920.
    [12]SUN Jian-liang, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Unequal Parallel Permeable Interface Cracks in a Piezoelectric Layer Bonded to Two Half Piezoelectric Materials Planes[J]. Applied Mathematics and Mechanics, 2005, 26(2): 145-154.
    [13]ZHOU Zhen-gong, WANG Biao. Scattering of Harmonic Anti-Plane Shear Waves by an Interface Crack in Magneto-Electro-Elastic Composites[J]. Applied Mathematics and Mechanics, 2005, 26(1): 16-24.
    [14]Lü Nian-chun, CHENG Yun-hong, XU Hong-min, CHENG Jin, TANG Li-qiang. Dynamic Crack Models on Problem of Bridging Fiber Pull-Out of Composite Materials[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1093-1100.
    [15]ZHOU Zhen-gong, WANG Biao. Investigation of the Dynamic Behavior of Two Collinear Anti-Plane Shear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces by a New Method[J]. Applied Mathematics and Mechanics, 2003, 24(1): 1-11.
    [16]ZHOU Zhen-gong, WANG Biao. The Behavior of Two Parallel Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1211-1219.
    [17]YI Zhi-jian, YAN Bo. General Form of Matching Equation of Elastic-Plastic Field Near Crack Line for Mode Ⅰ Crack Under Plane Stress Condition[J]. Applied Mathematics and Mechanics, 2001, (10): 1058-1066.
    [18]Xu Chunhui, Qin Taiyan, Hua Yunlong. Singular Integral Equations and Boundary Element Method of Cracks in Thermally Stressed Planar Solids[J]. Applied Mathematics and Mechanics, 2000, 21(4): 357-364.
    [19]Gao Cunfa, Fan Weixun. A Exact Solution of Crack Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 1999, 20(1): 47-54.
    [20]Wang Xiao-chun. Bending Integral Expressions of as Cylinder with Cracks[J]. Applied Mathematics and Mechanics, 1994, 15(2): 155-157.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.0 %FULLTEXT: 25.0 %META: 63.0 %META: 63.0 %PDF: 12.0 %PDF: 12.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %Milan: 2.8 %Milan: 2.8 %上海: 0.9 %上海: 0.9 %东京都: 4.6 %东京都: 4.6 %北京: 1.9 %北京: 1.9 %厦门: 0.9 %厦门: 0.9 %常州: 0.9 %常州: 0.9 %廊坊: 0.9 %廊坊: 0.9 %张家口: 9.3 %张家口: 9.3 %杭州: 0.9 %杭州: 0.9 %武汉: 0.9 %武汉: 0.9 %淄博: 0.9 %淄博: 0.9 %深圳: 5.6 %深圳: 5.6 %石家庄: 6.5 %石家庄: 6.5 %芒廷维尤: 6.5 %芒廷维尤: 6.5 %芝加哥: 2.8 %芝加哥: 2.8 %西宁: 15.7 %西宁: 15.7 %诺沃克: 30.6 %诺沃克: 30.6 %郑州: 0.9 %郑州: 0.9 %长沙: 0.9 %长沙: 0.9 %其他Milan上海东京都北京厦门常州廊坊张家口杭州武汉淄博深圳石家庄芒廷维尤芝加哥西宁诺沃克郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (68) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return