Citation: | YI Luyan, LIU Guowei. Stability of Stationary Solutions to Micropolar Fluid Equations With Unbounded Delay[J]. Applied Mathematics and Mechanics, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300 |
[1] |
ERINGEN A. Theory of micropolar fluids[J]. Indiana University Mathematics Journal, 1966, 16(1): 16001.
|
[2] |
DONG B Q, ZHANG Z. Global regularity of the 2D micropolar fluid flows with zero angular viscosity[J]. Journal of Differential Equations, 2010, 249(1): 200-213. doi: 10.1016/j.jde.2010.03.016
|
[3] |
GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. International Journal of Engineering Science, 1977, 15(2): 105-108. doi: 10.1016/0020-7225(77)90025-8
|
[4] |
ŁUKASZEWICZ G. Micropolar Fluids: Theory and Applications[M]//Modeling and Simulation in Science, Engineering and Technology. Boston: Birkhäuser, 1999.
|
[5] |
ŁUKASZEWICZ G. Long time behavior of 2D micropolar fluid flows[J]. Mathematical and Computer Modelling, 2001, 34(5/6): 487-509.
|
[6] |
ŁUKASZEWICZ G. Asymptotic behavior of micropolar fluid flows[J]. International Journal of Engineering Science, 2003, 41(3/4/5): 259-269.
|
[7] |
DONG B Q, CHEN Z M. Global attractors of two-dimensional micropolar fluid flows in some unbounded domains[J]. Applied Mathematics and Computation, 2006, 182(1): 610-620. doi: 10.1016/j.amc.2006.04.024
|
[8] |
ZHAO C, SUN W, HSU C H. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows[J]. Dynamics of Partial Differential Equations, 2015, 12(3): 265-288. doi: 10.4310/DPDE.2015.v12.n3.a4
|
[9] |
ZHAO C, ZHOU S, LIAN X. H1-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains[J]. Nonlinear Analysis: Real World Applications, 2008, 9(2): 608-627. doi: 10.1016/j.nonrwa.2006.12.005
|
[10] |
MANITIUS A. Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation[J]. IEEE Transactions on Automatic Control, 1984, 29(12): 1058-1068. doi: 10.1109/TAC.1984.1103436
|
[11] |
沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326
SHEN Yang, WANG Qikun, LIU Tangjing. Effect of shear thinning rheological properties on particle migration in microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. (in Chinese) doi: 10.21656/1000-0887.440326
|
[12] |
SUN W. Micropolar fluid flows with delay on 2D unbounded domains[J]. Journal of Applied Analysis and Computation, 2018, 8: 356-378.
|
[13] |
SUN W. The boundedness and uppersemicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J]. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071
|
[14] |
SUN W, LIU G. Pullback attractor for the 2D micropolar fluid flows with delay on unbounded domains[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(5): 2807-2833. doi: 10.1007/s40840-018-0634-9
|
[15] |
ZHAO C, SUN W. Global well-posedness and pullback attractors for a two-dimensional non-autonomous micropolar fluid flows with infinite delays[J]. Communications in Mathematical Sciences, 2017, 15(1): 97-121. doi: 10.4310/CMS.2017.v15.n1.a5
|
[16] |
CARABALLO T, REAL J. Navier-stokes equations with delays[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 2001, 457(2014): 2441-2453. doi: 10.1098/rspa.2001.0807
|
[17] |
ZHOU G, LIU G, SUN W. H2-boundedness of the pullback attractor of the micropolar fluid flows with infinite delays[J]. Boundary Value Problems, 2017, 2017: 133. doi: 10.1186/s13661-017-0866-x
|
[18] |
CARABALLO T, HAN X. A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions[J]. Discrete & Continuous Dynamical Systems (Series S), 2015, 8(6): 1079-1101.
|
[19] |
LIU L, CARABALLO T, MARÍN-RUBIO P. Stability results for 2D Navier-Stokes equations with unbounded delay[J]. Journal of Differential Equations, 2018, 265(11): 5685-5708. doi: 10.1016/j.jde.2018.07.008
|