Citation: | GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005 |
[1] |
Gomes H M,Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,26(1):49-67. doi: 10.1016/S0167-4730(03)00022-5
|
[2] |
Lee S H,Kwak B M. Response surface augmented moment method for efficient reliability analysis[J].Structural Safety,2006,28(3):261-272. doi: 10.1016/j.strusafe.2005.08.003
|
[3] |
Bucher C G,Bourgund U. A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66. doi: 10.1016/0167-4730(90)90012-E
|
[4] |
Rajashekhar M R,Ellingwood B R. A new look at the response surface approach for reliability analysis[J].Structural Safety,1993,12(3):205-220. doi: 10.1016/0167-4730(93)90003-J
|
[5] |
Kim S H,Na S W. Response surface method using vector projected sampling points[J].Structural Safety,1997,19(1):3-19. doi: 10.1016/S0167-4730(96)00037-9
|
[6] |
Guan H L,Melchers R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,23(4):429-444. doi: 10.1016/S0167-4730(02)00013-9
|
[7] |
Schueremans L,Gemert D V. Benefit of splines and neural networks in simulation based structural reliability analysis[J].Structural Safety,2005,27(3):246-261. doi: 10.1016/j.strusafe.2004.11.001
|
[8] |
Hurtado J E,Alvarez D A. Neural-network-based reliability analysis: a comparative study [J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113-132. doi: 10.1016/S0045-7825(01)00248-1
|
[9] |
Papadrakakis M,Lagaros N D.Reliability-based structural optimization using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32): 3491-3507. doi: 10.1016/S0045-7825(02)00287-6
|
[10] |
Deng J, Gu D S, Li X B,et al. Structural reliability analysis for implicit performance functions using artificial neural network[J].Structural Safety,2005,27(1):25-48. doi: 10.1016/j.strusafe.2004.03.004
|
[11] |
Elhewy A H, Mesbahi M,Pu Y. Reliability analysis of structures using neural network method[J].Probabilistic Engineering Mechanics,2006,21(1):44-53. doi: 10.1016/j.probengmech.2005.07.002
|
[12] |
Cheng J,Li Q S. Reliability analysis of structures using artificial neural network based genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2008,197(45/48): 3742-3750. doi: 10.1016/j.cma.2008.02.026
|
[13] |
Cardoso J B, Almeida J R, Dias J M,et al. Structural reliability analysis using Monte Carlo simulation and neural networks[J].Advances in Engineering Software,2008,39(6):505-513. doi: 10.1016/j.advengsoft.2007.03.015
|
[14] |
Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J].Reliability Engineering and System Safety,2002,76(3):237-243. doi: 10.1016/S0951-8320(02)00015-7
|
[15] |
Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite~element modeling[J].Journal of Structural Engineering,2003,129(8):1141-1149. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
|
[16] |
李洪双,吕震宙,岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学,2006,27(10):1135-1143.
|
[17] |
Chua K S. Efficient computations for large least square support vector machine classifiers[J].Pattern Recognition Letters,2003,24(1/3):75-80. doi: 10.1016/S0167-8655(02)00190-3
|
[18] |
Vapnik V N.Statistical Learning Theory[M].New York:John Wiley, 1998.
|
[19] |
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J].Neural Processing, Letters,1999,9(3): 293-300. doi: 10.1023/A:1018628609742
|