ZHANG Hong, Paul Georgescu, Juan J. Nieto, CHEN Lan-sun. On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield[J]. Applied Mathematics and Mechanics, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012
Citation: ZHANG Hong, Paul Georgescu, Juan J. Nieto, CHEN Lan-sun. On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield[J]. Applied Mathematics and Mechanics, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012

On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield

doi: 10.3879/j.issn.1000-0887.2009.07.012
  • Received Date: 2008-12-26
  • Rev Recd Date: 2009-06-10
  • Publish Date: 2009-07-15
  • A new model of a chemostat with variable yield and non-synchronous impulsive effect was proposed and investigated.It is observed that a set of threshold-like conditions guaranteeing the global stability of semi-trivial periodic solution,the permanence of the system and then a bifurcation of a nontrivial solution arises.Finally,the dynamics of the model was also illustrated by means of a few numerical experiments and computational simulations.
  • loading
  • [1]
    陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [2]
    Hsu S B,Li C C. A discrete-delayed model with plasmid-bearing,plasmid-free competition in a chemostat[J].Discrete and Continuous Dynamical Systems,Ser B,2005,5(3):699-718. doi: 10.3934/dcdsb.2005.5.699
    [3]
    Huang X C,Zhu L M. A three dimensional chemostat with quadratic yields[J].J Math Chem,2005,38(4):575-588. doi: 10.1007/s10910-005-6908-0
    [4]
    Pilyugin S S,Waltman P. Competition in the unstirred chemostat with periodic input and washout[J].SIAM J Appl Math,1999,59(4):1157-1177. doi: 10.1137/S0036139997323954
    [5]
    Smith R J,Wolkowicz G S K. Analysis of a model of the nutrient driven self-cycling fermentation process[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series B,2004,11(2):239-265.
    [6]
    Song X Y,Zhao Z. Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input[J].Discrete Dynamics in Nature and Society,2006,2006:1-14.
    [7]
    Sun S L,Chen L S. Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate[J].Journal of Mathematical Chemistry,2008,43(1):338-349. doi: 10.1007/s10910-006-9200-z
    [8]
    Wu J H,Nie H,Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat[J].SIAM J Appl Math,2004,65(1):209-229. doi: 10.1137/S0036139903423285
    [9]
    Hoeffken G,Talan D,Larsen L S,et al. Efficacy and safety of sequential moxifloxacin for treatment of community-acquired pneumonia associated with a typical pathogens[J].Eur J Clin Microbiol Infect Dis,2004,23(10):772-775. doi: 10.1007/s10096-004-1214-5
    [10]
    Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
    [11]
    Funasaki E,Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat[J].Theor Pop Biol,1994,44(2):203-224.
    [12]
    Lakmeche A,Arino O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J].Dynamics of Continuous,Discrete and Impulsive Systems,2000,7(2):265-287.
    [13]
    Nieto J J,Rodriguez-Lopez R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations[J].J Math Anal Appl,2006,318(2):593-610. doi: 10.1016/j.jmaa.2005.06.014
    [14]
    Georgescu P,Moro?anu G. Pest regulation by means of impulsive controls[J].Appl Math Comput,2007,190(1):790-803. doi: 10.1016/j.amc.2007.01.079
    [15]
    Zhang W H,Zhu S Y,Chen H,et al.Efficacy of intravenous moxifloxacin in treating patients with moderate to severe community-acquired pneumonia[J].Chinese J of Infect Chemother,2006,6(5):296-300.
    [16]
    Georgescu P,Zhang H,Chen L S. Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model[J].Appl Math Comput,2008,202(2):675-687.
    [17]
    Chow S N,Hale J.Methods of Bifurcation Theory[M].New York,NY:Springer-Verlag,1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1683) PDF downloads(655) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return