S. P. M. Isa, N. M. Arifin, R. Nazar, M. N. Saad. Effect of Non-Uniform Temperature Gradient and Magnetic Field on Onset of Marangoni Convection Heated From Below by a Constant Heat Flux[J]. Applied Mathematics and Mechanics, 2010, 31(7): 765-771. doi: 10.3879/j.issn.1000-0887.2010.07.001
Citation: S. P. M. Isa, N. M. Arifin, R. Nazar, M. N. Saad. Effect of Non-Uniform Temperature Gradient and Magnetic Field on Onset of Marangoni Convection Heated From Below by a Constant Heat Flux[J]. Applied Mathematics and Mechanics, 2010, 31(7): 765-771. doi: 10.3879/j.issn.1000-0887.2010.07.001

Effect of Non-Uniform Temperature Gradient and Magnetic Field on Onset of Marangoni Convection Heated From Below by a Constant Heat Flux

doi: 10.3879/j.issn.1000-0887.2010.07.001
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-01-11
  • Publish Date: 2010-07-15
  • The effect of magnetic field and a non-uniform temperature gradient on the Marangoni convection in a horizontal fluid layer, heated from below and cooled from above with a constantheat flux was investigated. A linear stability analysis was performed to undertake a detailed investigation. The influence of various parameters on the onset of convection was analyzed. Six non-uniform basic temperature profiles were considered and some general conclusions about their destabilizing effects were presented.
  • loading
  • [1]
    Schwabe D. Marangoni effects in crystal growth melts[J]. PCH Physicochem Hydrodyn, 1981, 2(4): 263-280.
    [2]
    Subramanian R S. Slow migration of a gas bubble in a thermal gradient[J]. AIChE J, 1981, 27(4):646-654. doi: 10.1002/aic.690270417
    [3]
    Sirigrano W A. A critical discussion of theories of flame spread across solid and liquid fuels[J]. Comb Sci Tech, 1972, 6:95-105. doi: 10.1080/00102207208952309
    [4]
    Pearson J R A. On convection cells induced by surface tension[J]. J Fluid Mech, 1958, 4(5): 489-500. doi: 10.1017/S0022112058000616
    [5]
    Arifin N M, Hashim I. Growth rates of Bénard-Marangoni convection in a fluid layer in the presence of a magnetic field[J]. Microgravity Sci Technol, 2004, 15(1): 22-27. doi: 10.1007/BF02870948
    [6]
    Scriven C, Sternling C V. On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity[J]. J Fluid Mech, 1964, 19(3): 321-340. doi: 10.1017/S0022112064000751
    [7]
    Smith K A. On convective instability induced by surface-tension gradients[J]. J Fluid Mech, 1966, 24(2): 401-414. doi: 10.1017/S0022112066000727
    [8]
    Takashima M. Nature of the neutral state in convective instability induced by surface tension and buoyancy[J]. J Phys Soc Japan, 1970, 28(3): 810-815. doi: 10.1143/JPSJ.28.810
    [9]
    Takashima M. Surface tension driven instability in a horizontal liquid layer with a deformable free surface—I: steady convection[J]. J Phys Soc Japan, 1981, 50(8): 2745-2750. doi: 10.1143/JPSJ.50.2745
    [10]
    Takashima M. Surface tension driven instability in a horizontal liquid layer with a deformable free surface—II: overstability[J]. J Phys Soc Japan, 1981, 50(8): 2751-2756. doi: 10.1143/JPSJ.50.2751
    [11]
    Vidal A, Acrivos A. Nature of the neutral state in surface-tension driven convection[J]. Phys Fluids, 1966, 9(3): 615-616. doi: 10.1063/1.1761716
    [12]
    Debler W R, Wolf L F. The effects of gravity and surface tension gradients on cellular convection in fluid layers with parabolic temperature profiles[J]. Trans Am Soc Mech Engrs, Series C, J Heat Tran, 1970, 92(3): 351-358.
    [13]
    Nield D A. The onset of transient convective instability[J]. J Fluid Mech, 1975, 71(3): 441-454. doi: 10.1017/S0022112075002662
    [14]
    Rudraiah N. The onset of transient Marangoni convection in a liquid layer subjected to rotation about a vertical axis[J]. Mater Sci Bull, Indian Acad Sci, 1982, 4(3): 297-316.
    [15]
    Friedrich R, Rudraiah N. Marangoni convection in a rotating fluid layer with non-uniform temperature gradient[J]. Int J Heat Mass Tran, 1984, 27(3): 443-449. doi: 10.1016/0017-9310(84)90291-6
    [16]
    Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability[M]. Oxford: Oxford University Press, 1961.
    [17]
    Nield D A. Surface tension and buoyancy effects in the cellular convection of an electrically conducting liquid in a magnetic field[J]. Z Angew Math Phys, 1966, 17(1): 131-139. doi: 10.1007/BF01594092
    [18]
    Wilson S K. The effect of a uniform magnetic field on the onset of Marangoni convection in a layer of conducting fluid[J].Q J Mech Appl Math, 1993, 46(2): 211-248. doi: 10.1093/qjmam/46.2.211
    [19]
    Wilson S K. The effect of a uniform magnetic field on the onset of steady Bénard-Marangoni convection in a layer of conducting[J]. J Engng Math, 1993, 27(2): 161-188. doi: 10.1007/BF00127480
    [20]
    Wilson S K. The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary[J]. Phys Fluid, 1994, 6: 3591-3600. doi: 10.1063/1.868417
    [21]
    Rudraiah N, Ramachandramurthy V, Chandna O P. Effects of magnetic field and non-uniform temperature gradient on Marangoni convection[J]. Int J Heat Mass Tran, 1985, 28(8): 1621-1624. doi: 10.1016/0017-9310(85)90264-9
    [22]
    Rudraiah N, Chandna O P, Garg M R. Effects of non-uniform temperature gradient on magneto-convection driven by surface tension and buoyancy[J]. Ind J Tech, 1986, 24: 279-284.
    [23]
    Char M I, Chen C C. Effect of non-uniform temperature gradient on the onset of oscillatory Bénard-Marangoni convection of an electrically conducting liquid in a magnetic field[J]. Int J Engng Sci, 2003, 41: 1711-1721. doi: 10.1016/S0020-7225(03)00068-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1691) PDF downloads(813) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return