CHEN Bo, LI Xiao-wei, LIU Gao-lian. A Minimax Principle on Energy Dissipation of Incompressible Shear Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002
Citation: CHEN Bo, LI Xiao-wei, LIU Gao-lian. A Minimax Principle on Energy Dissipation of Incompressible Shear Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002

A Minimax Principle on Energy Dissipation of Incompressible Shear Flow

doi: 10.3879/j.issn.1000-0887.2010.07.002
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-28
  • Publish Date: 2010-07-15
  • Energy dissipation rate is one of the most important concepts in turbulence theory. Doering-Constantin's variational principle characterizes the upper bounds(maximum) of the tmie-averaged rate of viscous energy dissipation. In present study, an optmiization theoretic point of view was adopted to recast Doering-Constantin's formulation into a minimax principle for the energy dissipation of an incompressible shear flow. Then the Kakutaniminimax theorem in game theory was applied to obtain a set of conditions under which the maximization and the minimization in the minmiax principle are commutative. The results not only elucidate the spectral constraint of Doering-Constantin, but also confirm the equivalence of Doering-Constantin's variational principle and Howard-Busse's statistical turbulence theory.
  • loading
  • [1]
    Frisch U.Turbulence[M]. Cambridge: Cambridge University Press, 1995.
    [2]
    Wang X. Time averaged energy dissipation rate for shear driven flows in Rn[J].Physica D, 1997, 99(4): 555-563. doi: 10.1016/S0167-2789(96)00161-3
    [3]
    Nicodemus R, Grossmann S, Holthaus M. Variational bound on energy dissipation in plane Couette flow[J]. Phys Rev E, 1997, 56(6): 6774-6786. doi: 10.1103/PhysRevE.56.6774
    [4]
    Busse F H. The optimum theory of turbulence[J]. Adv Appl Mech, 1978, 18(1): 77-121.
    [5]
    Howard L N. Bounds on flow quantities[J]. Ann Rev Fluid Mech, 1972, 4(1): 473-494. doi: 10.1146/annurev.fl.04.010172.002353
    [6]
    Doering C, Constantin P. Energy dissipation in shear driven turbulence[J].Phys Rev Lett, 1992, 69(11): 1648-1651. doi: 10.1103/PhysRevLett.69.1648
    [7]
    Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows: shear flow[J]. Phys Rev E, 1994, 49(5): 4087-4099. doi: 10.1103/PhysRevE.49.4087
    [8]
    Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows—Ⅱ: channel flow[J]. Phys Rev E, 1995, 51(4): 3192-3198. doi: 10.1103/PhysRevE.51.3192
    [9]
    Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows—Ⅲ: convection[J].Phys Rev E, 1996, 53(6): 5957-5981. doi: 10.1103/PhysRevE.53.5957
    [10]
    Nicodemus R, Grossmann S, Holthaus M. Improved variational principle for bounds on energy dissipation in turbulent shear flow[J]. Physica D, 1997, 101(2): 178-190. doi: 10.1016/S0167-2789(96)00210-2
    [11]
    Kerswell R R.Variational bounds on shear-driven turbulence and turbulent Boussinesq convection[J]. Physica D, 1997, 100(3/4): 355-376. doi: 10.1016/S0167-2789(96)00227-8
    [12]
    Kerswell R R. Unification of variational principles for turbulent shear flows: the background method of Doering-Constantin and the mean fluctuation formulation of Howard-Busse[J]. Physica D, 1998, 121(2): 175-192. doi: 10.1016/S0167-2789(98)00104-3
    [13]
    Alexakis A, Doering C. Energy and Enstrophy Dissipation in Steady State 2D Turbulence[P]. arXiv: Physics/0605090v1, 2006.
    [14]
    Bowman J C, Doering C R, Eckhardt B, Davoudi J, Roberts M, Schumacher J.Links between dissipation, intermittency, and helicity in the GOY model revisited[J]. Physica D, 2006, 218(1): 1-10. doi: 10.1016/j.physd.2006.01.028
    [15]
    Chesdikov A, Doering C, Petrov N. Energy Dissipation in Fractal-Forced Flow[P]. arXiv: Physics/0607280v1, 2006.
    [16]
    Doering C, Eckhardt B, Schumacher J. Energy dissipation in body-forced plane shear flow[J]. J Fluid Mech, 2003, 494(1): 275-284. doi: 10.1017/S002211200300613X
    [17]
    Petrov N, Lu L, Doering C. Variational bounds on the energy dissipation rate in body-forced shear flow[J]. J Turbulence, 2005, 6(3): 211-234.
    [18]
    Bewley T R, Aamo O M. A ‘win-win’ mechanism for low-drag transients in controlled two-dimensional channel flow and its implications for sustained drag reduction[J]. J Fluid Mech, 2004, 499(1):183-196. doi: 10.1017/S0022112003006852
    [19]
    Landau L, Lifschitz E. Fluid Mechanics[M]. 2nd ed. New York: Pergamon Press, 1987.
    [20]
    Simons M. Minimax Theorems and Their Proofs[M].Du D-Z, Pardalos P M.Minimax and applications, 1-23, Dordrecht: Kluwer Academic Publishers, 1995.
    [21]
    郭大钧. 非线性泛函分析[M]. 济南:山东科技出版社,1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1611) PDF downloads(806) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return