CHEN Yu-mei, XIE Xiao-ping. Streamline Diffusion Nonconforming Finite Element Method for the Time-Dependent Linearized Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(7): 822-834. doi: 10.3879/j.issn.1000-0887.2010.07.007
Citation: CHEN Yu-mei, XIE Xiao-ping. Streamline Diffusion Nonconforming Finite Element Method for the Time-Dependent Linearized Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(7): 822-834. doi: 10.3879/j.issn.1000-0887.2010.07.007

Streamline Diffusion Nonconforming Finite Element Method for the Time-Dependent Linearized Navier-Stokes Equations

doi: 10.3879/j.issn.1000-0887.2010.07.007
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-28
  • Publish Date: 2010-07-15
  • A finite difference streamline diffusion non conforming finite element approxmiation was proposed for solving the time-dependent linearized Navier-Stokes equations. Stream line diffusion finite element method was used to discretize the space variables in order to cope with the usual instabilities caused by the convection term and finite difference discretization was used in the time domain. Noncon forming finite element approxmiations were used for the velocity and pressure fields: the velocity is approxmiated by discontinuous piecewise linear and the pressure by piecewise constant. Stability and optimal error estimates for the discrete solutions are obtained.
  • loading
  • [1]
    Hughes T J R, Brooks A N.A multi-dimensional up-wind scheme with no crosswind diffusion[C]Hughes T J R. Finite Element Methods for Convection Dominated Flows. ASME Monograph AMD-34, 1979:19-35.
    [2]
    Nvert U.A finite element for convection-diffusion problems[D]. PhD thesis. Goteborg: Chalmers University of Technology, 1982.
    [3]
    Johnson C.Finite element methods for convection-diffusion problems[C]Glowinski R, Lions J L. Computing Methods in Engineering and Applied Sciences Ⅴ.Amsterdam: North-Holland, 1981, 311-323.
    [4]
    Johnson C, Nvert U.An analysis of some finite element methods for advection-diffusion[C]Axelsson O, Frank L S, Van der Sluis A.Analytical and Numerical Approaches to Asymptotic Problems in Analysis.Amsterdam: North-Holland, 1981:99-118.
    [5]
    Johnson C, Nvert U, Pitkranta J.Finite element methods for linear hyperbolic problems[J].Computer Methods in Applied Mechanics and Engineering, 1984, 45(1/3):285-312. doi: 10.1016/0045-7825(84)90158-0
    [6]
    Johnson C, Saranen J.Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations[J].Mathematics of Computation,1986, 47(175):1-18. doi: 10.1090/S0025-5718-1986-0842120-4
    [7]
    Tobiska L, Verfürth R.Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,1996, 33(1):107-127. doi: 10.1137/0733007
    [8]
    Zhou G H.How accurate is the streamline diffusion finite element method[J].Journal of Computational Mathematics, 1997, 66(217):31-44. doi: 10.1090/S0025-5718-97-00788-6
    [9]
    Sun C, Shen H.The finite difference streamline diffusion method for time-dependent convection-diffusion equations[J].Numerical Mathematics(A Journal of Chinese Universities English Series),1998, 7(1):72-85.
    [10]
    张强.不可压N-S方程的差分流线扩散法[J].计算数学, 2003, 25(3):311-320.
    [11]
    张强, 孙澈.非线性对流扩散方程的差分流线扩散有限元方法[J].计算数学, 1998, 20(2):211-224.
    [12]
    Sun T J, Ma K Y.The finite difference streamline diffusion method for the incompressible Navier-Stokes equations[J].Applied Mathematics and Computation, 2004, 149:493-505. doi: 10.1016/S0096-3003(03)00156-5
    [13]
    John V, Maubach J, Tobiska L.Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems[J].Numerische Mathematik, 1997, 78(2):165-188. doi: 10.1007/s002110050309
    [14]
    John V, Matthies G, Schiewech F, Tobiska L.A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems[J].Computer Methods in Applied Mechanics and Engineering, 1998, 166(1/2):85-97. doi: 10.1016/S0045-7825(98)80014-5
    [15]
    Matthies G, Tobiska L. The streamline-diffusion method for conforming and nonconforming finite elements of lowest order applied to convection-diffusion peoblems[J].Computing, 2001, 66(4): 343-364. doi: 10.1007/s006070170019
    [16]
    Knobloch P, Tobiska L.A streamline diffusion method for nonconforming finite element approximations applied to the linearized incompressible Navier-Stokes equations[C] Iliev O P. Proceedings of the 4th International Conference on Numerical Methods in Application. Singapore, Sofia: World Scientific, 1999:530-538.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1905) PDF downloads(854) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return