XIE Chun-mei, FENG Min-fu. A New Stabilized Method for Quasi-Newtonian Flow[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1036-1049. doi: 10.3879/j.issn.1000-0887.2010.09.004
Citation: XIE Chun-mei, FENG Min-fu. A New Stabilized Method for Quasi-Newtonian Flow[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1036-1049. doi: 10.3879/j.issn.1000-0887.2010.09.004

A New Stabilized Method for Quasi-Newtonian Flow

doi: 10.3879/j.issn.1000-0887.2010.09.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-07-02
  • Publish Date: 2010-09-15
  • For a generalized quasi-Newtonian flow,a new stabilized method focused on the low order velocity-pressure pairs((bi)linear/(bi)linear and(bi)linear/constant element)was presented.A development of pressure projection stabilized method was extended from Stokes problems to quasi-Newtonian flow problems.The theoretical framework developed herein yielded an estimate bound which measured the error in the approximation of the velocity in the W1,r(Ω)norm and that of the pressure in the Lr'(Ω), (1/r+1/r'=1).The power-law model and the Carreau model were special ones of the quasi-Newtonian flow problem discussed.Moreover,a residual-based posterior bound was given.Finally,numerical experiments were presented to confirm our theoretical results.
  • loading
  • [1]
    Barrett J W, Liu W B. Finite element error anaysis of a quasi-Newtonian flow obeying the Carreau or power law[J]. Numer Math, 1993,64(1): 433-453. doi: 10.1007/BF01388698
    [2]
    Barrett J W, Liu W B. Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow[J]. Numer Math, 1994, 68(4): 437-456. doi: 10.1007/s002110050071
    [3]
    Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J]. Numer Math,1988, 53(1/2): 225-235. doi: 10.1007/BF01395886
    [4]
    Hansbo P, Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J]. Comp Meth Appl Mech Engrg, 1990, 84(2): 175-192. doi: 10.1016/0045-7825(90)90116-4
    [5]
    Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Math Comp, 1993, 60(202): 531-543. doi: 10.1090/S0025-5718-1993-1164127-6
    [6]
    Zhou L, Zhou T X. Finite element method for a three-fields model for quasi-Newtonian flow[J]. Mathematica Numerica Sinica, 1997, 3: 305-312.
    [7]
    Hughes T J R, Mazzei L, Oberai A A, Wray A A. The Multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence[J]. Phys Fluids, 2001,13(2): 505-512. doi: 10.1063/1.1332391
    [8]
    Li J, He Y N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. J Comp Appl Math, 2008, 214(1): 58-65. doi: 10.1016/j.cam.2007.02.015
    [9]
    Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2007,44(1): 82-101.
    [10]
    Li J, He Y N, Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Compu Meth Appl Mech Engrg, 2007,197(1/4): 22-35. doi: 10.1016/j.cma.2007.06.029
    [11]
    He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math, 2008, 58(10): 1503-1514. doi: 10.1016/j.apnum.2007.08.005
    [12]
    Horgan C O. Korn’s inequalities and their applications in continuum mechanics[J]. SIAM Review, 1995, 37(4): 491-511. doi: 10.1137/1037123
    [13]
    Mosolov P P, Myasnikov V P. A proof of Korn’s inequality[J]. Soviet Math Dokl, 1971,12: 1618-1622.
    [14]
    Baranger J, Najib K. Analyse numérique des écoulements quasi-Newtoniens dont la viscosité-obéit  la loi puissance ou la loi de Carreau[J]. Numer Math, 1990,58(1): 35-49. doi: 10.1007/BF01385609
    [15]
    Berrone S, Süli E. Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows[J]. IMA J Numer Anal, 2008,28(2): 382-421.
    [16]
    Dohrmann C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J]. J Numer Meth in Fluids, 2004,46(2): 183-201. doi: 10.1002/fld.752
    [17]
    Baranger J, Najib K, Sandri D. Numerical analysis of a three-fields model for a quasi-Newtonian flow[J]. Compu Meth Appl Mech Engrg, 1993,109(3/4): 281-292. doi: 10.1016/0045-7825(93)90082-9
    [18]
    Mu J, Feng M F. Numerical analysis of an FEM for a transient viscoelastic flow[J]. Numerical Mathematics: A Journal of Chinese Universities,English Series, 2004, 13(2): 150-165.
    [19]
    Zhou L, Zhou T X. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows nonlinear model[J]. J Comp Appl Math, 1997,81(1): 19-28. doi: 10.1016/S0377-0427(97)00002-2
    [20]
    Ge Z H, Feng M F, He Y N. A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations[J]. Appl Math Comp, 2008, 202(2): 700-707. doi: 10.1016/j.amc.2008.03.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1524) PDF downloads(837) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return